用于主动脉断裂块状结构六面体网格划分的半自动方法。

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Domagoj Bošnjak, Antonio Pepe, Richard Schussnig, Jan Egger, Thomas-Peter Fries
{"title":"用于主动脉断裂块状结构六面体网格划分的半自动方法。","authors":"Domagoj Bošnjak,&nbsp;Antonio Pepe,&nbsp;Richard Schussnig,&nbsp;Jan Egger,&nbsp;Thomas-Peter Fries","doi":"10.1002/cnm.3860","DOIUrl":null,"url":null,"abstract":"<p>The article presents a semi-automatic approach to generating structured hexahedral meshes of patient-specific aortas ailed by <i>aortic dissection</i>. The condition manifests itself as a formation of two blood flow channels in the aorta, as a result of a tear in the inner layers of the aortic wall. Subsequently, the morphology of the aorta is greatly impacted, making the task of domain discretization highly challenging. The meshing algorithm presented herein is automatic for the individual lumina, whereas the tears require user interaction. Starting from an input (triangle) surface mesh, we construct an <i>implicit surface representation</i> as well as a <i>topological skeleton</i>, which provides a basis for the generation of a <i>block-structure</i>. Thereafter, the mesh generation is performed via <i>transfinite maps</i>. The meshes are structured and fully hexahedral, exhibit good quality and reliably match the original surface. As they are generated with computational fluid dynamics in mind, a fluid flow simulation is performed to verify their usefulness. Moreover, since the approach is based on valid block-structures, the meshes can be made very coarse (around 1000 elements for an entire aortic dissection domain), and thus promote using solvers based on the geometric multigrid method, which is typically reliant on the presence of a hierarchy of coarser meshes.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3860","citationCount":"0","resultStr":"{\"title\":\"A semi-automatic method for block-structured hexahedral meshing of aortic dissections\",\"authors\":\"Domagoj Bošnjak,&nbsp;Antonio Pepe,&nbsp;Richard Schussnig,&nbsp;Jan Egger,&nbsp;Thomas-Peter Fries\",\"doi\":\"10.1002/cnm.3860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article presents a semi-automatic approach to generating structured hexahedral meshes of patient-specific aortas ailed by <i>aortic dissection</i>. The condition manifests itself as a formation of two blood flow channels in the aorta, as a result of a tear in the inner layers of the aortic wall. Subsequently, the morphology of the aorta is greatly impacted, making the task of domain discretization highly challenging. The meshing algorithm presented herein is automatic for the individual lumina, whereas the tears require user interaction. Starting from an input (triangle) surface mesh, we construct an <i>implicit surface representation</i> as well as a <i>topological skeleton</i>, which provides a basis for the generation of a <i>block-structure</i>. Thereafter, the mesh generation is performed via <i>transfinite maps</i>. The meshes are structured and fully hexahedral, exhibit good quality and reliably match the original surface. As they are generated with computational fluid dynamics in mind, a fluid flow simulation is performed to verify their usefulness. Moreover, since the approach is based on valid block-structures, the meshes can be made very coarse (around 1000 elements for an entire aortic dissection domain), and thus promote using solvers based on the geometric multigrid method, which is typically reliant on the presence of a hierarchy of coarser meshes.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"40 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3860\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3860\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3860","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

文章介绍了一种半自动方法,用于生成主动脉夹层患者主动脉的结构化六面体网格。主动脉夹层是主动脉壁内层撕裂后形成的两个血流通道。因此,主动脉的形态会受到很大影响,使域离散化任务变得极具挑战性。本文介绍的网格划分算法对于单个管腔是自动的,而对于撕裂则需要用户交互。从输入(三角形)曲面网格开始,我们构建了一个隐式曲面表示法和拓扑骨架,这为块状结构的生成提供了基础。之后,通过无限映射生成网格。网格是结构化的全六面体网格,具有良好的质量,并能可靠地与原始表面相匹配。由于生成网格时考虑到了计算流体动力学,因此还进行了流体流动模拟,以验证网格的实用性。此外,由于该方法基于有效的块结构,因此网格可以做得非常粗糙(整个主动脉夹层域约 1000 个元素),从而促进了基于几何多网格法的求解器的使用,该方法通常依赖于更粗糙网格的层次结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A semi-automatic method for block-structured hexahedral meshing of aortic dissections

A semi-automatic method for block-structured hexahedral meshing of aortic dissections

The article presents a semi-automatic approach to generating structured hexahedral meshes of patient-specific aortas ailed by aortic dissection. The condition manifests itself as a formation of two blood flow channels in the aorta, as a result of a tear in the inner layers of the aortic wall. Subsequently, the morphology of the aorta is greatly impacted, making the task of domain discretization highly challenging. The meshing algorithm presented herein is automatic for the individual lumina, whereas the tears require user interaction. Starting from an input (triangle) surface mesh, we construct an implicit surface representation as well as a topological skeleton, which provides a basis for the generation of a block-structure. Thereafter, the mesh generation is performed via transfinite maps. The meshes are structured and fully hexahedral, exhibit good quality and reliably match the original surface. As they are generated with computational fluid dynamics in mind, a fluid flow simulation is performed to verify their usefulness. Moreover, since the approach is based on valid block-structures, the meshes can be made very coarse (around 1000 elements for an entire aortic dissection domain), and thus promote using solvers based on the geometric multigrid method, which is typically reliant on the presence of a hierarchy of coarser meshes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信