{"title":"Artemia雌性生殖系统的单核图谱表明Z染色体的种系抑制。","authors":"Marwan Elkrewi, Beatriz Vicoso","doi":"10.1371/journal.pgen.1011376","DOIUrl":null,"url":null,"abstract":"<p><p>Our understanding of the molecular pathways that regulate oogenesis and define cellular identity in the Arthropod female reproductive system and the extent of their conservation is currently very limited. This is due to the focus on model systems, including Drosophila and Daphnia, which do not reflect the observed diversity of morphologies, reproductive modes, and sex chromosome systems. We use single-nucleus RNA and ATAC sequencing to produce a comprehensive single nucleus atlas of the adult Artemia franciscana female reproductive system. We map our data to the Fly Cell Atlas single-nucleus dataset of the Drosophila melanogaster ovary, shedding light on the conserved regulatory programs between the two distantly related Arthropod species. We identify the major cell types known to be present in the Artemia ovary, including germ cells, follicle cells, and ovarian muscle cells. Additionally, we use the germ cells to explore gene regulation and expression of the Z chromosome during meiosis, highlighting its unique regulatory dynamics and allowing us to explore the presence of meiotic sex chromosome silencing in this group.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 8","pages":"e1011376"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392275/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-nucleus atlas of the Artemia female reproductive system suggests germline repression of the Z chromosome.\",\"authors\":\"Marwan Elkrewi, Beatriz Vicoso\",\"doi\":\"10.1371/journal.pgen.1011376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our understanding of the molecular pathways that regulate oogenesis and define cellular identity in the Arthropod female reproductive system and the extent of their conservation is currently very limited. This is due to the focus on model systems, including Drosophila and Daphnia, which do not reflect the observed diversity of morphologies, reproductive modes, and sex chromosome systems. We use single-nucleus RNA and ATAC sequencing to produce a comprehensive single nucleus atlas of the adult Artemia franciscana female reproductive system. We map our data to the Fly Cell Atlas single-nucleus dataset of the Drosophila melanogaster ovary, shedding light on the conserved regulatory programs between the two distantly related Arthropod species. We identify the major cell types known to be present in the Artemia ovary, including germ cells, follicle cells, and ovarian muscle cells. Additionally, we use the germ cells to explore gene regulation and expression of the Z chromosome during meiosis, highlighting its unique regulatory dynamics and allowing us to explore the presence of meiotic sex chromosome silencing in this group.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"20 8\",\"pages\":\"e1011376\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392275/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011376\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011376","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Single-nucleus atlas of the Artemia female reproductive system suggests germline repression of the Z chromosome.
Our understanding of the molecular pathways that regulate oogenesis and define cellular identity in the Arthropod female reproductive system and the extent of their conservation is currently very limited. This is due to the focus on model systems, including Drosophila and Daphnia, which do not reflect the observed diversity of morphologies, reproductive modes, and sex chromosome systems. We use single-nucleus RNA and ATAC sequencing to produce a comprehensive single nucleus atlas of the adult Artemia franciscana female reproductive system. We map our data to the Fly Cell Atlas single-nucleus dataset of the Drosophila melanogaster ovary, shedding light on the conserved regulatory programs between the two distantly related Arthropod species. We identify the major cell types known to be present in the Artemia ovary, including germ cells, follicle cells, and ovarian muscle cells. Additionally, we use the germ cells to explore gene regulation and expression of the Z chromosome during meiosis, highlighting its unique regulatory dynamics and allowing us to explore the presence of meiotic sex chromosome silencing in this group.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.