{"title":"能谱计算机断层扫描多参数成像在胃癌血管和神经浸润状态术前评估中的应用。","authors":"Jing Wang, Jian-Cheng Liang, Fa-Te Lin, Jun Ma","doi":"10.4240/wjgs.v16.i8.2511","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer (GC), but traditional imaging methods have some limitations in preoperative evaluation. In recent years, energy spectrum computed tomography (CT) multiparameter imaging technology has been gradually applied in clinical practice because of its advantages in tissue contrast and lesion detail display.</p><p><strong>Aim: </strong>To explore and analyze the value of multiparameter energy spectrum CT imaging in the preoperative assessment of vascular invasion (LVI) and nerve invasion (PNI) in GC patients.</p><p><strong>Methods: </strong>Data from 62 patients with GC confirmed by pathology and accompanied by energy spectrum CT scanning at our hospital between September 2022 and September 2023, including 46 males and 16 females aged 36-71 (57.5 ± 9.1) years, were retrospectively collected. The patients were divided into a positive group (42 patients) and a negative group (20 patients) according to the presence of LVI/PNI. The CT values (CT40 keV, CT70 keV), iodine concentration (IC), and normalized IC (NIC) of lesions in the upper energy spectrum CT images of the arterial phase, venous phase, and delayed phase 40 and 70 keV were measured, and the slopes of the energy spectrum curves [K (40-70)] from 40 to 70 keV were calculated. Arterial phase combined parameter, venous phase combined parameters (VP-ALLs), and delayed phase association parameters were calculated for patients with late-stage disease. The differences in the energy spectrum parameters between the positive and negative groups were compared, receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC), sensitivity, specificity, and optimal threshold were calculated to measure the diagnostic efficiency of each parameter.</p><p><strong>Results: </strong>In the delayed phase, the CT40 keV, CT70 keV, K (40-70), IC, NIC, and CT70 keV and the NIC in the upper arterial and venous phases of energy spectrum CT were greater in the LVI/PNI-positive group than in the LVI-negative group. The representative parameters for the arterial phase NIC were 0.14 ± 0.04 in the positive group and 0.12 ± 0.04 in the negative group. The venous phase NIC was 0.5 (0.5, 0.6) in the positive group and 0.4 (0.4, 0.5) in the negative group. Last, for the delayed phase NIC, it was 0.6 ± 0.1 in the positive group and 0.5 ± 0.1 in the negative group (all <i>P</i> values are less than 0.05). ROC curve analysis demonstrated that the diagnostic efficacy of each parameter during the venous stage was superior to that during the arterial and delayed stages. Furthermore, the diagnostic efficacy of the combined parameter throughout all three stages was superior to that of any single parameter. The AUC, sensitivity, and specificity of the optimal parameter, VP-ALL, were 0.931 (95% confidence interval: 0.872-0.990), 80.95%, and 95.00%, respectively.</p><p><strong>Conclusion: </strong>When assessing the condition of LVI and PNI (perineural invasion) in patients with GC prior to surgery, the ability to diagnose these conditions using venous stage parameters was superior to that using arterial stage and delayed stage parameters. Furthermore, the diagnostic accuracy of using a combination of parameters was better than that of using individual parameters alone.</p>","PeriodicalId":23759,"journal":{"name":"World Journal of Gastrointestinal Surgery","volume":"16 8","pages":"2511-2520"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362936/pdf/","citationCount":"0","resultStr":"{\"title\":\"Energy spectrum computed tomography multi-parameter imaging in preoperative assessment of vascular and neuroinvasive status in gastric cancer.\",\"authors\":\"Jing Wang, Jian-Cheng Liang, Fa-Te Lin, Jun Ma\",\"doi\":\"10.4240/wjgs.v16.i8.2511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer (GC), but traditional imaging methods have some limitations in preoperative evaluation. In recent years, energy spectrum computed tomography (CT) multiparameter imaging technology has been gradually applied in clinical practice because of its advantages in tissue contrast and lesion detail display.</p><p><strong>Aim: </strong>To explore and analyze the value of multiparameter energy spectrum CT imaging in the preoperative assessment of vascular invasion (LVI) and nerve invasion (PNI) in GC patients.</p><p><strong>Methods: </strong>Data from 62 patients with GC confirmed by pathology and accompanied by energy spectrum CT scanning at our hospital between September 2022 and September 2023, including 46 males and 16 females aged 36-71 (57.5 ± 9.1) years, were retrospectively collected. The patients were divided into a positive group (42 patients) and a negative group (20 patients) according to the presence of LVI/PNI. The CT values (CT40 keV, CT70 keV), iodine concentration (IC), and normalized IC (NIC) of lesions in the upper energy spectrum CT images of the arterial phase, venous phase, and delayed phase 40 and 70 keV were measured, and the slopes of the energy spectrum curves [K (40-70)] from 40 to 70 keV were calculated. Arterial phase combined parameter, venous phase combined parameters (VP-ALLs), and delayed phase association parameters were calculated for patients with late-stage disease. The differences in the energy spectrum parameters between the positive and negative groups were compared, receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC), sensitivity, specificity, and optimal threshold were calculated to measure the diagnostic efficiency of each parameter.</p><p><strong>Results: </strong>In the delayed phase, the CT40 keV, CT70 keV, K (40-70), IC, NIC, and CT70 keV and the NIC in the upper arterial and venous phases of energy spectrum CT were greater in the LVI/PNI-positive group than in the LVI-negative group. The representative parameters for the arterial phase NIC were 0.14 ± 0.04 in the positive group and 0.12 ± 0.04 in the negative group. The venous phase NIC was 0.5 (0.5, 0.6) in the positive group and 0.4 (0.4, 0.5) in the negative group. Last, for the delayed phase NIC, it was 0.6 ± 0.1 in the positive group and 0.5 ± 0.1 in the negative group (all <i>P</i> values are less than 0.05). ROC curve analysis demonstrated that the diagnostic efficacy of each parameter during the venous stage was superior to that during the arterial and delayed stages. Furthermore, the diagnostic efficacy of the combined parameter throughout all three stages was superior to that of any single parameter. The AUC, sensitivity, and specificity of the optimal parameter, VP-ALL, were 0.931 (95% confidence interval: 0.872-0.990), 80.95%, and 95.00%, respectively.</p><p><strong>Conclusion: </strong>When assessing the condition of LVI and PNI (perineural invasion) in patients with GC prior to surgery, the ability to diagnose these conditions using venous stage parameters was superior to that using arterial stage and delayed stage parameters. Furthermore, the diagnostic accuracy of using a combination of parameters was better than that of using individual parameters alone.</p>\",\"PeriodicalId\":23759,\"journal\":{\"name\":\"World Journal of Gastrointestinal Surgery\",\"volume\":\"16 8\",\"pages\":\"2511-2520\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Gastrointestinal Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4240/wjgs.v16.i8.2511\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastrointestinal Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4240/wjgs.v16.i8.2511","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Energy spectrum computed tomography multi-parameter imaging in preoperative assessment of vascular and neuroinvasive status in gastric cancer.
Background: Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer (GC), but traditional imaging methods have some limitations in preoperative evaluation. In recent years, energy spectrum computed tomography (CT) multiparameter imaging technology has been gradually applied in clinical practice because of its advantages in tissue contrast and lesion detail display.
Aim: To explore and analyze the value of multiparameter energy spectrum CT imaging in the preoperative assessment of vascular invasion (LVI) and nerve invasion (PNI) in GC patients.
Methods: Data from 62 patients with GC confirmed by pathology and accompanied by energy spectrum CT scanning at our hospital between September 2022 and September 2023, including 46 males and 16 females aged 36-71 (57.5 ± 9.1) years, were retrospectively collected. The patients were divided into a positive group (42 patients) and a negative group (20 patients) according to the presence of LVI/PNI. The CT values (CT40 keV, CT70 keV), iodine concentration (IC), and normalized IC (NIC) of lesions in the upper energy spectrum CT images of the arterial phase, venous phase, and delayed phase 40 and 70 keV were measured, and the slopes of the energy spectrum curves [K (40-70)] from 40 to 70 keV were calculated. Arterial phase combined parameter, venous phase combined parameters (VP-ALLs), and delayed phase association parameters were calculated for patients with late-stage disease. The differences in the energy spectrum parameters between the positive and negative groups were compared, receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC), sensitivity, specificity, and optimal threshold were calculated to measure the diagnostic efficiency of each parameter.
Results: In the delayed phase, the CT40 keV, CT70 keV, K (40-70), IC, NIC, and CT70 keV and the NIC in the upper arterial and venous phases of energy spectrum CT were greater in the LVI/PNI-positive group than in the LVI-negative group. The representative parameters for the arterial phase NIC were 0.14 ± 0.04 in the positive group and 0.12 ± 0.04 in the negative group. The venous phase NIC was 0.5 (0.5, 0.6) in the positive group and 0.4 (0.4, 0.5) in the negative group. Last, for the delayed phase NIC, it was 0.6 ± 0.1 in the positive group and 0.5 ± 0.1 in the negative group (all P values are less than 0.05). ROC curve analysis demonstrated that the diagnostic efficacy of each parameter during the venous stage was superior to that during the arterial and delayed stages. Furthermore, the diagnostic efficacy of the combined parameter throughout all three stages was superior to that of any single parameter. The AUC, sensitivity, and specificity of the optimal parameter, VP-ALL, were 0.931 (95% confidence interval: 0.872-0.990), 80.95%, and 95.00%, respectively.
Conclusion: When assessing the condition of LVI and PNI (perineural invasion) in patients with GC prior to surgery, the ability to diagnose these conditions using venous stage parameters was superior to that using arterial stage and delayed stage parameters. Furthermore, the diagnostic accuracy of using a combination of parameters was better than that of using individual parameters alone.