{"title":"了解达尔湖水动态:生理参数和季节变化的综合分析。","authors":"Seerat Sultan, Shruti Singh, Rajesh Kumar, Showkat A Malik, Javaid Hassan Sheikh, Amrit Sudershan","doi":"10.2166/wst.2024.258","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining the standard of water quality in an aquatic habitat necessitates continual assessment of its physicochemical properties. The purpose of this study was to evaluate physicochemical properties and to discuss the causes of spatiotemporal variability in key physicochemical parameters at five different locations of Dal Lake. Water samples were collected in four seasons for 3 years (i.e., January 2019-December 2021) to evaluate various physicochemical properties using standard methods. The analysis shows that the macrophytic development has increased due to organic and inorganic load, leading to the Lake's deterioration. The analysis indicates positive and negative correlations among various parameters across five sampling sites. Principal component analysis shows that two components (PC1 and PC2) explain 47.35, 47.54, and 48.11% of the variability in the years 2019, 2020, and 2021, respectively. From 2019 to 2021, the continuous decrease in dissolved oxygen and increased levels of magnesium, conductivity, alkalinity, total hardness, calcium hardness, total phosphorus, and nitrate-nitrogen suggest a trend toward eutrophication in the lake.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 4","pages":"1250-1266"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding water dynamics in Dal Lake: a comprehensive analysis of physiological parameters and seasonal variations.\",\"authors\":\"Seerat Sultan, Shruti Singh, Rajesh Kumar, Showkat A Malik, Javaid Hassan Sheikh, Amrit Sudershan\",\"doi\":\"10.2166/wst.2024.258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maintaining the standard of water quality in an aquatic habitat necessitates continual assessment of its physicochemical properties. The purpose of this study was to evaluate physicochemical properties and to discuss the causes of spatiotemporal variability in key physicochemical parameters at five different locations of Dal Lake. Water samples were collected in four seasons for 3 years (i.e., January 2019-December 2021) to evaluate various physicochemical properties using standard methods. The analysis shows that the macrophytic development has increased due to organic and inorganic load, leading to the Lake's deterioration. The analysis indicates positive and negative correlations among various parameters across five sampling sites. Principal component analysis shows that two components (PC1 and PC2) explain 47.35, 47.54, and 48.11% of the variability in the years 2019, 2020, and 2021, respectively. From 2019 to 2021, the continuous decrease in dissolved oxygen and increased levels of magnesium, conductivity, alkalinity, total hardness, calcium hardness, total phosphorus, and nitrate-nitrogen suggest a trend toward eutrophication in the lake.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":\"90 4\",\"pages\":\"1250-1266\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.258\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.258","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Understanding water dynamics in Dal Lake: a comprehensive analysis of physiological parameters and seasonal variations.
Maintaining the standard of water quality in an aquatic habitat necessitates continual assessment of its physicochemical properties. The purpose of this study was to evaluate physicochemical properties and to discuss the causes of spatiotemporal variability in key physicochemical parameters at five different locations of Dal Lake. Water samples were collected in four seasons for 3 years (i.e., January 2019-December 2021) to evaluate various physicochemical properties using standard methods. The analysis shows that the macrophytic development has increased due to organic and inorganic load, leading to the Lake's deterioration. The analysis indicates positive and negative correlations among various parameters across five sampling sites. Principal component analysis shows that two components (PC1 and PC2) explain 47.35, 47.54, and 48.11% of the variability in the years 2019, 2020, and 2021, respectively. From 2019 to 2021, the continuous decrease in dissolved oxygen and increased levels of magnesium, conductivity, alkalinity, total hardness, calcium hardness, total phosphorus, and nitrate-nitrogen suggest a trend toward eutrophication in the lake.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.