开发基于铁蛋白的纳米颗粒疫苗,预防典型猪瘟。

IF 5.2 3区 医学 Q1 IMMUNOLOGY
Vaccines Pub Date : 2024-08-22 DOI:10.3390/vaccines12080948
Yiwan Song, Zhongmao Yuan, Junzhi Ji, Yang Ruan, Xiaowen Li, Lianxiang Wang, Weijun Zeng, Keke Wu, Wenshuo Hu, Lin Yi, Hongxing Ding, Mingqiu Zhao, Shuangqi Fan, Zhaoyao Li, Jinding Chen
{"title":"开发基于铁蛋白的纳米颗粒疫苗,预防典型猪瘟。","authors":"Yiwan Song, Zhongmao Yuan, Junzhi Ji, Yang Ruan, Xiaowen Li, Lianxiang Wang, Weijun Zeng, Keke Wu, Wenshuo Hu, Lin Yi, Hongxing Ding, Mingqiu Zhao, Shuangqi Fan, Zhaoyao Li, Jinding Chen","doi":"10.3390/vaccines12080948","DOIUrl":null,"url":null,"abstract":"<p><p>The occurrence of classical swine fever (CSF) poses a significant threat to the global swine industry. Developing an effective and safe vaccine is crucial for preventing and controlling CSF. Here, we constructed self-assembled ferritin nanoparticles fused with the classical swine fever virus (CSFV) E2 protein and a derived B cell epitope (Fe-E2B) using a baculovirus expression system (BVES), demonstrating enhanced immunogenicity. Furthermore, we provide a detailed evaluation of the immunological efficacy of the FeE2B in rabbits. The results showed that robust and sustained antibody responses were detected in rabbits immunized with the Fe-E2B nanoparticle vaccine, comparable to those elicited by commercially available vaccines. Additionally, we demonstrated that the vaccine effectively activated crucial immune factors IFN-γ and IL-4 in vivo, increasing their levels by 1.41-fold and 1.39-fold, respectively. Immunization with Fe-E2B enabled rabbits to avoid viremia and stereotypic fever after CSFV challenge. In conclusion, this study highlights the potential of ferritin nanoparticles as antigen-presenting carriers to induce robust immune responses, proposing a candidate vaccine strategy for the prevention and control of CSF.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360710/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a Ferritin-Based Nanoparticle Vaccine against Classical Swine Fever.\",\"authors\":\"Yiwan Song, Zhongmao Yuan, Junzhi Ji, Yang Ruan, Xiaowen Li, Lianxiang Wang, Weijun Zeng, Keke Wu, Wenshuo Hu, Lin Yi, Hongxing Ding, Mingqiu Zhao, Shuangqi Fan, Zhaoyao Li, Jinding Chen\",\"doi\":\"10.3390/vaccines12080948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The occurrence of classical swine fever (CSF) poses a significant threat to the global swine industry. Developing an effective and safe vaccine is crucial for preventing and controlling CSF. Here, we constructed self-assembled ferritin nanoparticles fused with the classical swine fever virus (CSFV) E2 protein and a derived B cell epitope (Fe-E2B) using a baculovirus expression system (BVES), demonstrating enhanced immunogenicity. Furthermore, we provide a detailed evaluation of the immunological efficacy of the FeE2B in rabbits. The results showed that robust and sustained antibody responses were detected in rabbits immunized with the Fe-E2B nanoparticle vaccine, comparable to those elicited by commercially available vaccines. Additionally, we demonstrated that the vaccine effectively activated crucial immune factors IFN-γ and IL-4 in vivo, increasing their levels by 1.41-fold and 1.39-fold, respectively. Immunization with Fe-E2B enabled rabbits to avoid viremia and stereotypic fever after CSFV challenge. In conclusion, this study highlights the potential of ferritin nanoparticles as antigen-presenting carriers to induce robust immune responses, proposing a candidate vaccine strategy for the prevention and control of CSF.</p>\",\"PeriodicalId\":23634,\"journal\":{\"name\":\"Vaccines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/vaccines12080948\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines12080948","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

典型猪瘟(CSF)的发生对全球养猪业构成了重大威胁。开发有效、安全的疫苗对于预防和控制 CSF 至关重要。在这里,我们利用杆状病毒表达系统(BVES)构建了融合了经典猪瘟病毒(CSFV)E2蛋白和衍生B细胞表位(Fe-E2B)的自组装铁蛋白纳米颗粒,证明其免疫原性增强。此外,我们还对 FeE2B 在兔子体内的免疫效力进行了详细评估。结果表明,使用 Fe-E2B 纳米粒子疫苗免疫的兔子体内检测到了强健而持久的抗体反应,与市售疫苗引起的抗体反应相当。此外,我们还证明该疫苗能有效激活体内关键免疫因子 IFN-γ 和 IL-4,使其水平分别提高了 1.41 倍和 1.39 倍。用Fe-E2B免疫可使家兔在受到CSFV挑战后避免病毒血症和刻板发热。总之,这项研究强调了铁蛋白纳米颗粒作为抗原递呈载体诱导强大免疫反应的潜力,为预防和控制 CSF 提出了一种候选疫苗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Ferritin-Based Nanoparticle Vaccine against Classical Swine Fever.

The occurrence of classical swine fever (CSF) poses a significant threat to the global swine industry. Developing an effective and safe vaccine is crucial for preventing and controlling CSF. Here, we constructed self-assembled ferritin nanoparticles fused with the classical swine fever virus (CSFV) E2 protein and a derived B cell epitope (Fe-E2B) using a baculovirus expression system (BVES), demonstrating enhanced immunogenicity. Furthermore, we provide a detailed evaluation of the immunological efficacy of the FeE2B in rabbits. The results showed that robust and sustained antibody responses were detected in rabbits immunized with the Fe-E2B nanoparticle vaccine, comparable to those elicited by commercially available vaccines. Additionally, we demonstrated that the vaccine effectively activated crucial immune factors IFN-γ and IL-4 in vivo, increasing their levels by 1.41-fold and 1.39-fold, respectively. Immunization with Fe-E2B enabled rabbits to avoid viremia and stereotypic fever after CSFV challenge. In conclusion, this study highlights the potential of ferritin nanoparticles as antigen-presenting carriers to induce robust immune responses, proposing a candidate vaccine strategy for the prevention and control of CSF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vaccines
Vaccines Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍: Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信