炎症性肠病基因组学、转录组学、蛋白质组学和元基因组学与人工智能的结合。

IF 5.8 2区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
United European Gastroenterology Journal Pub Date : 2024-12-01 Epub Date: 2024-08-31 DOI:10.1002/ueg2.12655
Anna Lucia Cannarozzi, Anna Latiano, Luca Massimino, Fabrizio Bossa, Francesco Giuliani, Matteo Riva, Federica Ungaro, Maria Guerra, Anna Laura Di Brina, Giuseppe Biscaglia, Francesca Tavano, Sonia Carparelli, Gionata Fiorino, Silvio Danese, Francesco Perri, Orazio Palmieri
{"title":"炎症性肠病基因组学、转录组学、蛋白质组学和元基因组学与人工智能的结合。","authors":"Anna Lucia Cannarozzi, Anna Latiano, Luca Massimino, Fabrizio Bossa, Francesco Giuliani, Matteo Riva, Federica Ungaro, Maria Guerra, Anna Laura Di Brina, Giuseppe Biscaglia, Francesca Tavano, Sonia Carparelli, Gionata Fiorino, Silvio Danese, Francesco Perri, Orazio Palmieri","doi":"10.1002/ueg2.12655","DOIUrl":null,"url":null,"abstract":"<p><p>Various extrinsic and intrinsic factors such as drug exposures, antibiotic treatments, smoking, lifestyle, genetics, immune responses, and the gut microbiome characterize ulcerative colitis and Crohn's disease, collectively called inflammatory bowel disease (IBD). All these factors contribute to the complexity and heterogeneity of the disease etiology and pathogenesis leading to major challenges for the scientific community in improving management, medical treatments, genetic risk, and exposome impact. Understanding the interaction(s) among these factors and their effects on the immune system in IBD patients has prompted advances in multi-omics research, the development of new tools as part of system biology, and more recently, artificial intelligence (AI) approaches. These innovative approaches, supported by the availability of big data and large volumes of digital medical datasets, hold promise in better understanding the natural histories, predictors of disease development, severity, complications and treatment outcomes in complex diseases, providing decision support to doctors, and promising to bring us closer to the realization of the \"precision medicine\" paradigm. This review aims to provide an overview of current IBD omics based on both individual (genomics, transcriptomics, proteomics, metagenomics) and multi-omics levels, highlighting how AI can facilitate the integration of heterogeneous data to summarize our current understanding of the disease and to identify current gaps in knowledge to inform upcoming research in this field.</p>","PeriodicalId":23444,"journal":{"name":"United European Gastroenterology Journal","volume":" ","pages":"1461-1480"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652336/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inflammatory bowel disease genomics, transcriptomics, proteomics and metagenomics meet artificial intelligence.\",\"authors\":\"Anna Lucia Cannarozzi, Anna Latiano, Luca Massimino, Fabrizio Bossa, Francesco Giuliani, Matteo Riva, Federica Ungaro, Maria Guerra, Anna Laura Di Brina, Giuseppe Biscaglia, Francesca Tavano, Sonia Carparelli, Gionata Fiorino, Silvio Danese, Francesco Perri, Orazio Palmieri\",\"doi\":\"10.1002/ueg2.12655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various extrinsic and intrinsic factors such as drug exposures, antibiotic treatments, smoking, lifestyle, genetics, immune responses, and the gut microbiome characterize ulcerative colitis and Crohn's disease, collectively called inflammatory bowel disease (IBD). All these factors contribute to the complexity and heterogeneity of the disease etiology and pathogenesis leading to major challenges for the scientific community in improving management, medical treatments, genetic risk, and exposome impact. Understanding the interaction(s) among these factors and their effects on the immune system in IBD patients has prompted advances in multi-omics research, the development of new tools as part of system biology, and more recently, artificial intelligence (AI) approaches. These innovative approaches, supported by the availability of big data and large volumes of digital medical datasets, hold promise in better understanding the natural histories, predictors of disease development, severity, complications and treatment outcomes in complex diseases, providing decision support to doctors, and promising to bring us closer to the realization of the \\\"precision medicine\\\" paradigm. This review aims to provide an overview of current IBD omics based on both individual (genomics, transcriptomics, proteomics, metagenomics) and multi-omics levels, highlighting how AI can facilitate the integration of heterogeneous data to summarize our current understanding of the disease and to identify current gaps in knowledge to inform upcoming research in this field.</p>\",\"PeriodicalId\":23444,\"journal\":{\"name\":\"United European Gastroenterology Journal\",\"volume\":\" \",\"pages\":\"1461-1480\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652336/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"United European Gastroenterology Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ueg2.12655\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"United European Gastroenterology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ueg2.12655","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

药物暴露、抗生素治疗、吸烟、生活方式、遗传、免疫反应和肠道微生物组等各种外在和内在因素是溃疡性结肠炎和克罗恩病(统称为炎症性肠病(IBD))的特征。所有这些因素导致了疾病病因和发病机制的复杂性和异质性,给科学界在改善管理、医疗、遗传风险和暴露组影响方面带来了重大挑战。了解这些因素之间的相互作用及其对 IBD 患者免疫系统的影响,推动了多组学研究的进步、作为系统生物学一部分的新工具的开发,以及最近的人工智能(AI)方法。在大数据和大量数字医疗数据集的支持下,这些创新方法有望更好地了解复杂疾病的自然病史、疾病发展的预测因素、严重程度、并发症和治疗效果,为医生提供决策支持,并有望使我们更接近 "精准医疗 "范式的实现。本综述旨在概述目前基于个体(基因组学、转录组学、蛋白质组学、元基因组学)和多组学水平的 IBD omics,重点介绍人工智能如何促进异构数据的整合,以总结我们目前对疾病的理解,并找出目前的知识差距,为该领域即将开展的研究提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inflammatory bowel disease genomics, transcriptomics, proteomics and metagenomics meet artificial intelligence.

Various extrinsic and intrinsic factors such as drug exposures, antibiotic treatments, smoking, lifestyle, genetics, immune responses, and the gut microbiome characterize ulcerative colitis and Crohn's disease, collectively called inflammatory bowel disease (IBD). All these factors contribute to the complexity and heterogeneity of the disease etiology and pathogenesis leading to major challenges for the scientific community in improving management, medical treatments, genetic risk, and exposome impact. Understanding the interaction(s) among these factors and their effects on the immune system in IBD patients has prompted advances in multi-omics research, the development of new tools as part of system biology, and more recently, artificial intelligence (AI) approaches. These innovative approaches, supported by the availability of big data and large volumes of digital medical datasets, hold promise in better understanding the natural histories, predictors of disease development, severity, complications and treatment outcomes in complex diseases, providing decision support to doctors, and promising to bring us closer to the realization of the "precision medicine" paradigm. This review aims to provide an overview of current IBD omics based on both individual (genomics, transcriptomics, proteomics, metagenomics) and multi-omics levels, highlighting how AI can facilitate the integration of heterogeneous data to summarize our current understanding of the disease and to identify current gaps in knowledge to inform upcoming research in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
United European Gastroenterology Journal
United European Gastroenterology Journal GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
10.50
自引率
13.30%
发文量
147
期刊介绍: United European Gastroenterology Journal (UEG Journal) is the official Journal of the United European Gastroenterology (UEG), a professional non-profit organisation combining all the leading European societies concerned with digestive disease. UEG’s member societies represent over 22,000 specialists working across medicine, surgery, paediatrics, GI oncology and endoscopy, which makes UEG a unique platform for collaboration and the exchange of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信