{"title":"通过线性回归分析改进活体宽视野荧光成像中的血液动力学校正。","authors":"","doi":"10.1016/j.neuroimage.2024.120816","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate interpretation of <em>in vivo</em> wide-field fluorescent imaging (WFFI) data requires precise separation of raw fluorescence signals into neural and hemodynamic components. The classical Beer-Lambert law-based approach, which uses concurrent 530-nm illumination to estimate relative changes in cerebral blood volume (CBV), fails to account for the scattering and reflection of 530-nm photons from non-neuronal components leading to biased estimates of CBV changes and subsequent misrepresentation of neural activity. This study introduces a novel linear regression approach designed to overcome this limitation. This correction provides a more reliable representation of CBV changes and neural activity in fluorescence data. Our method is validated across multiple datasets, demonstrating its superiority over the classical approach.</p></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053811924003136/pdfft?md5=4fbdc0b4c99623d6c12411437c906eaa&pid=1-s2.0-S1053811924003136-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Refining hemodynamic correction in in vivo wide-field fluorescent imaging through linear regression analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.neuroimage.2024.120816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate interpretation of <em>in vivo</em> wide-field fluorescent imaging (WFFI) data requires precise separation of raw fluorescence signals into neural and hemodynamic components. The classical Beer-Lambert law-based approach, which uses concurrent 530-nm illumination to estimate relative changes in cerebral blood volume (CBV), fails to account for the scattering and reflection of 530-nm photons from non-neuronal components leading to biased estimates of CBV changes and subsequent misrepresentation of neural activity. This study introduces a novel linear regression approach designed to overcome this limitation. This correction provides a more reliable representation of CBV changes and neural activity in fluorescence data. Our method is validated across multiple datasets, demonstrating its superiority over the classical approach.</p></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1053811924003136/pdfft?md5=4fbdc0b4c99623d6c12411437c906eaa&pid=1-s2.0-S1053811924003136-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811924003136\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924003136","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Refining hemodynamic correction in in vivo wide-field fluorescent imaging through linear regression analysis
Accurate interpretation of in vivo wide-field fluorescent imaging (WFFI) data requires precise separation of raw fluorescence signals into neural and hemodynamic components. The classical Beer-Lambert law-based approach, which uses concurrent 530-nm illumination to estimate relative changes in cerebral blood volume (CBV), fails to account for the scattering and reflection of 530-nm photons from non-neuronal components leading to biased estimates of CBV changes and subsequent misrepresentation of neural activity. This study introduces a novel linear regression approach designed to overcome this limitation. This correction provides a more reliable representation of CBV changes and neural activity in fluorescence data. Our method is validated across multiple datasets, demonstrating its superiority over the classical approach.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.