Grigory V Gladkov, Anastasiia K Kimeklis, Olga V Orlova, Tatiana O Lisina, Arina A Kichko, Alexander D Bezlepsky, Evgeny E Andronov
{"title":"两种截然不同土壤类型中的土壤微生物降解纤维素的动力学。","authors":"Grigory V Gladkov, Anastasiia K Kimeklis, Olga V Orlova, Tatiana O Lisina, Arina A Kichko, Alexander D Bezlepsky, Evgeny E Andronov","doi":"10.3390/microorganisms12081728","DOIUrl":null,"url":null,"abstract":"<p><p>The search for active cellulolytic consortia among soil microorganisms is of significant applied interest, but the dynamics of the formation of such communities remain insufficiently studied. To gain insight into the formation of an active cellulolytic community, the experiment was designed to examine the colonization of a sterile substrate (cellulose) by microorganisms from two soil types: sod-podzolic and chernozem. To achieve this, the substrate was placed in the soil and incubated for six months. To assess microbiome dynamics, the experiment employed sequencing of 16S rRNA gene fragment and ITS2 amplicon libraries at four time points. It was demonstrated that, from the second month of the experiment, the prokaryotic component of the communities reached a state of stability, with a community composition specific to each soil type. The results demonstrated no relationship between changes in community diversity and soil respiration. There also was no significant shift in the community diversity throughout the chronosequence. Furthermore, the taxonomic composition of the community shifted towards a decrease in the proportion of Pseudomonadota and an increase in representatives of the Bacteroidota, Bacillota, and Verrucomicrobiota phyla. The network analysis of the community demonstrated that, in contrast to sod-podzolic soil, chernozem is distinguished by a higher modularity, with the formation of taxon-specific groups of microorganisms at each stage of the chronoseries. These differences are attributed to the alterations in the eukaryotic component of the community, particularly in the prevalence of nematodes and predatory fungi, which in turn influenced the cellulolytic community.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356995/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Cellulose Degradation by Soil Microorganisms from Two Contrasting Soil Types.\",\"authors\":\"Grigory V Gladkov, Anastasiia K Kimeklis, Olga V Orlova, Tatiana O Lisina, Arina A Kichko, Alexander D Bezlepsky, Evgeny E Andronov\",\"doi\":\"10.3390/microorganisms12081728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The search for active cellulolytic consortia among soil microorganisms is of significant applied interest, but the dynamics of the formation of such communities remain insufficiently studied. To gain insight into the formation of an active cellulolytic community, the experiment was designed to examine the colonization of a sterile substrate (cellulose) by microorganisms from two soil types: sod-podzolic and chernozem. To achieve this, the substrate was placed in the soil and incubated for six months. To assess microbiome dynamics, the experiment employed sequencing of 16S rRNA gene fragment and ITS2 amplicon libraries at four time points. It was demonstrated that, from the second month of the experiment, the prokaryotic component of the communities reached a state of stability, with a community composition specific to each soil type. The results demonstrated no relationship between changes in community diversity and soil respiration. There also was no significant shift in the community diversity throughout the chronosequence. Furthermore, the taxonomic composition of the community shifted towards a decrease in the proportion of Pseudomonadota and an increase in representatives of the Bacteroidota, Bacillota, and Verrucomicrobiota phyla. The network analysis of the community demonstrated that, in contrast to sod-podzolic soil, chernozem is distinguished by a higher modularity, with the formation of taxon-specific groups of microorganisms at each stage of the chronoseries. These differences are attributed to the alterations in the eukaryotic component of the community, particularly in the prevalence of nematodes and predatory fungi, which in turn influenced the cellulolytic community.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356995/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms12081728\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12081728","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Dynamics of Cellulose Degradation by Soil Microorganisms from Two Contrasting Soil Types.
The search for active cellulolytic consortia among soil microorganisms is of significant applied interest, but the dynamics of the formation of such communities remain insufficiently studied. To gain insight into the formation of an active cellulolytic community, the experiment was designed to examine the colonization of a sterile substrate (cellulose) by microorganisms from two soil types: sod-podzolic and chernozem. To achieve this, the substrate was placed in the soil and incubated for six months. To assess microbiome dynamics, the experiment employed sequencing of 16S rRNA gene fragment and ITS2 amplicon libraries at four time points. It was demonstrated that, from the second month of the experiment, the prokaryotic component of the communities reached a state of stability, with a community composition specific to each soil type. The results demonstrated no relationship between changes in community diversity and soil respiration. There also was no significant shift in the community diversity throughout the chronosequence. Furthermore, the taxonomic composition of the community shifted towards a decrease in the proportion of Pseudomonadota and an increase in representatives of the Bacteroidota, Bacillota, and Verrucomicrobiota phyla. The network analysis of the community demonstrated that, in contrast to sod-podzolic soil, chernozem is distinguished by a higher modularity, with the formation of taxon-specific groups of microorganisms at each stage of the chronoseries. These differences are attributed to the alterations in the eukaryotic component of the community, particularly in the prevalence of nematodes and predatory fungi, which in turn influenced the cellulolytic community.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.