{"title":"中国西南地区不同土壤中耐季铵盐杀菌剂细菌的分布与特征。","authors":"Ziyi Guo, Cunli Qin, Lilan Zhang","doi":"10.3390/microorganisms12081742","DOIUrl":null,"url":null,"abstract":"<p><p>Quaternary ammonium compounds (QACs) are active ingredients in hundreds of disinfectants for controlling the epidemic of infectious diseases like SARS-CoV-2 (COVID-19), and are also widely used in shale gas exploitation. The occurrence of QAC-resistant bacteria in the environment could enlarge the risk of sterilization failure, which is not fully understood. In this study, QAC-resistant bacteria were enumerated and characterized in 25 soils collected from shale gas exploitation areas. Total counts of QAC-resistant bacteria ranged from 6.81 × 10<sup>3</sup> to 4.48 × 10<sup>5</sup> cfu/g, accounting for 1.59% to 29.13% of the total bacteria. In total, 29 strains were further purified and identified as <i>Lysinibacillus</i>, <i>Bacillus</i>, and <i>Klebsiella</i> genus. There, bacteria covering many pathogenic bacteria showed different QACs tolerance with MIC (minimum inhibition concentration) varying from 4 mg/L to 64 mg/L and almost 58.6% of isolates have not previously been found to tolerate QACs. Meanwhile, the QAC-resistant strains in the produced water of shale gas were also identified. Phylogenetic trees showed that the resistant species in soil and produced water are distinctly different. That is the first time the distribution and characterization of QAC-resistant bacteria in the soil environment has been analyzed.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357233/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distribution and Characterization of Quaternary Ammonium Biocides Resistant Bacteria in Different Soils, in South-Western China.\",\"authors\":\"Ziyi Guo, Cunli Qin, Lilan Zhang\",\"doi\":\"10.3390/microorganisms12081742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quaternary ammonium compounds (QACs) are active ingredients in hundreds of disinfectants for controlling the epidemic of infectious diseases like SARS-CoV-2 (COVID-19), and are also widely used in shale gas exploitation. The occurrence of QAC-resistant bacteria in the environment could enlarge the risk of sterilization failure, which is not fully understood. In this study, QAC-resistant bacteria were enumerated and characterized in 25 soils collected from shale gas exploitation areas. Total counts of QAC-resistant bacteria ranged from 6.81 × 10<sup>3</sup> to 4.48 × 10<sup>5</sup> cfu/g, accounting for 1.59% to 29.13% of the total bacteria. In total, 29 strains were further purified and identified as <i>Lysinibacillus</i>, <i>Bacillus</i>, and <i>Klebsiella</i> genus. There, bacteria covering many pathogenic bacteria showed different QACs tolerance with MIC (minimum inhibition concentration) varying from 4 mg/L to 64 mg/L and almost 58.6% of isolates have not previously been found to tolerate QACs. Meanwhile, the QAC-resistant strains in the produced water of shale gas were also identified. Phylogenetic trees showed that the resistant species in soil and produced water are distinctly different. That is the first time the distribution and characterization of QAC-resistant bacteria in the soil environment has been analyzed.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357233/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms12081742\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12081742","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Distribution and Characterization of Quaternary Ammonium Biocides Resistant Bacteria in Different Soils, in South-Western China.
Quaternary ammonium compounds (QACs) are active ingredients in hundreds of disinfectants for controlling the epidemic of infectious diseases like SARS-CoV-2 (COVID-19), and are also widely used in shale gas exploitation. The occurrence of QAC-resistant bacteria in the environment could enlarge the risk of sterilization failure, which is not fully understood. In this study, QAC-resistant bacteria were enumerated and characterized in 25 soils collected from shale gas exploitation areas. Total counts of QAC-resistant bacteria ranged from 6.81 × 103 to 4.48 × 105 cfu/g, accounting for 1.59% to 29.13% of the total bacteria. In total, 29 strains were further purified and identified as Lysinibacillus, Bacillus, and Klebsiella genus. There, bacteria covering many pathogenic bacteria showed different QACs tolerance with MIC (minimum inhibition concentration) varying from 4 mg/L to 64 mg/L and almost 58.6% of isolates have not previously been found to tolerate QACs. Meanwhile, the QAC-resistant strains in the produced water of shale gas were also identified. Phylogenetic trees showed that the resistant species in soil and produced water are distinctly different. That is the first time the distribution and characterization of QAC-resistant bacteria in the soil environment has been analyzed.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.