超灵敏 SERF 原子磁强计与微型化混合蒸汽电池。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Yintao Ma, Yao Chen, Mingzhi Yu, Yanbin Wang, Shun Lu, Ju Guo, Guoxi Luo, Libo Zhao, Ping Yang, Qijing Lin, Zhuangde Jiang
{"title":"超灵敏 SERF 原子磁强计与微型化混合蒸汽电池。","authors":"Yintao Ma, Yao Chen, Mingzhi Yu, Yanbin Wang, Shun Lu, Ju Guo, Guoxi Luo, Libo Zhao, Ping Yang, Qijing Lin, Zhuangde Jiang","doi":"10.1038/s41378-024-00758-6","DOIUrl":null,"url":null,"abstract":"<p><p>The chip-scale hybrid optical pumping spin-exchange relaxation-free (SERF) atomic magnetometer with a single-beam arrangement has prominent applications in biomagnetic measurements because of its outstanding features, including ultrahigh sensitivity, an enhanced signal-to-noise ratio, homogeneous spin polarization and a much simpler optical configuration than other devices. In this work, a miniaturized single-beam hybrid optical pumping SERF atomic magnetometer based on a microfabricated atomic vapor cell is demonstrated. Although the optically thin Cs atoms are spin-polarized, the dense Rb atoms determine the experimental results. The enhanced signal strength and narrowed resonance linewidth are experimentally proven, which shows the superiority of the proposed magnetometer scheme. By using a differential detection scheme, we effectively suppress optical noise with an approximate five-fold improvement. Moreover, the cell temperature markedly affects the performance of the magnetometer. We systematically investigate the effects of temperature on the magnetometer parameters. The theoretical basis for these effects is explained in detail. The developed miniaturized magnetometer has an optimal magnetic sensitivity of 20 fT/Hz<sup>1/2</sup>. The presented work provides a foundation for the chip-scale integration of ultrahighly sensitive quantum magnetometers that can be used for forward-looking magnetocardiography (MCG) and magnetoencephalography (MEG) applications.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364876/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive SERF atomic magnetometer with a miniaturized hybrid vapor cell.\",\"authors\":\"Yintao Ma, Yao Chen, Mingzhi Yu, Yanbin Wang, Shun Lu, Ju Guo, Guoxi Luo, Libo Zhao, Ping Yang, Qijing Lin, Zhuangde Jiang\",\"doi\":\"10.1038/s41378-024-00758-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The chip-scale hybrid optical pumping spin-exchange relaxation-free (SERF) atomic magnetometer with a single-beam arrangement has prominent applications in biomagnetic measurements because of its outstanding features, including ultrahigh sensitivity, an enhanced signal-to-noise ratio, homogeneous spin polarization and a much simpler optical configuration than other devices. In this work, a miniaturized single-beam hybrid optical pumping SERF atomic magnetometer based on a microfabricated atomic vapor cell is demonstrated. Although the optically thin Cs atoms are spin-polarized, the dense Rb atoms determine the experimental results. The enhanced signal strength and narrowed resonance linewidth are experimentally proven, which shows the superiority of the proposed magnetometer scheme. By using a differential detection scheme, we effectively suppress optical noise with an approximate five-fold improvement. Moreover, the cell temperature markedly affects the performance of the magnetometer. We systematically investigate the effects of temperature on the magnetometer parameters. The theoretical basis for these effects is explained in detail. The developed miniaturized magnetometer has an optimal magnetic sensitivity of 20 fT/Hz<sup>1/2</sup>. The presented work provides a foundation for the chip-scale integration of ultrahighly sensitive quantum magnetometers that can be used for forward-looking magnetocardiography (MCG) and magnetoencephalography (MEG) applications.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00758-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00758-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

芯片级混合光泵浦无自旋交换弛豫(SERF)原子磁强计采用单光束布置,具有超高灵敏度、增强信噪比、同质自旋极化以及比其他设备更简单的光学配置等突出特点,因此在生物磁性测量中有着显著的应用。在这项工作中,展示了一种基于微加工原子蒸气电池的小型化单光束混合光泵浦 SERF 原子磁强计。虽然光学稀薄的 Cs 原子具有自旋极性,但致密的 Rb 原子决定了实验结果。实验证明,增强的信号强度和缩小的共振线宽显示了拟议磁强计方案的优越性。通过使用差分检测方案,我们有效地抑制了光学噪声,并将其提高了约五倍。此外,电池温度会明显影响磁强计的性能。我们系统地研究了温度对磁强计参数的影响。我们详细解释了这些影响的理论基础。所开发的微型磁强计的最佳磁灵敏度为 20 fT/Hz1/2。这项研究为超高灵敏度量子磁强计的芯片级集成奠定了基础,这种量子磁强计可用于前瞻性磁心动图(MCG)和脑磁图(MEG)应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrasensitive SERF atomic magnetometer with a miniaturized hybrid vapor cell.

Ultrasensitive SERF atomic magnetometer with a miniaturized hybrid vapor cell.

The chip-scale hybrid optical pumping spin-exchange relaxation-free (SERF) atomic magnetometer with a single-beam arrangement has prominent applications in biomagnetic measurements because of its outstanding features, including ultrahigh sensitivity, an enhanced signal-to-noise ratio, homogeneous spin polarization and a much simpler optical configuration than other devices. In this work, a miniaturized single-beam hybrid optical pumping SERF atomic magnetometer based on a microfabricated atomic vapor cell is demonstrated. Although the optically thin Cs atoms are spin-polarized, the dense Rb atoms determine the experimental results. The enhanced signal strength and narrowed resonance linewidth are experimentally proven, which shows the superiority of the proposed magnetometer scheme. By using a differential detection scheme, we effectively suppress optical noise with an approximate five-fold improvement. Moreover, the cell temperature markedly affects the performance of the magnetometer. We systematically investigate the effects of temperature on the magnetometer parameters. The theoretical basis for these effects is explained in detail. The developed miniaturized magnetometer has an optimal magnetic sensitivity of 20 fT/Hz1/2. The presented work provides a foundation for the chip-scale integration of ultrahighly sensitive quantum magnetometers that can be used for forward-looking magnetocardiography (MCG) and magnetoencephalography (MEG) applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信