{"title":"血卟啉衍生物介导的 630 nm 激光对人肺鳞状细胞癌 H520 细胞凋亡、转移、侵袭和上皮-间质转化的影响","authors":"Tingting Liu, Enhua Zhang, Shichao Cui, Haoyu Dai, Xiaohui Yang, Cunzhi Lin","doi":"10.1007/s10103-024-04176-y","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) has significant advantages in the treatment of malignant lung tumors. The research on the mechanism of PDT mediated by hematoporphyrin derivatives (HPD) and its cytotoxic effects on lung cancer cells has primarily focused on lung adenocarcinoma cells. However, the impact of HPD-PDT on lung squamous cell carcinoma has not been thoroughly studied. This study aimed to investigate the effects of 630 nm laser on apoptosis, metastasis, invasion, and epithelial-mesenchymal transition (EMT) in human lung squamous cell carcinoma H520 cells mediated by HPD. H520 cells were divided into four groups: control group, photosensitizer group, irradiation group, and HPD-PDT group. Cell proliferation was assessed using CCK8 assay; cell apoptosis was detected by Hoechst 33258 staining and flow cytometry; cell migration and invasion abilities were evaluated using wound-healing and invasion assays; and protein and mRNA expressions were analyzed by Western blot and reverse transcription-polymerase chain reaction (RT-PCR) respectively. Results showed that HPD-PDT significantly inhibited cell proliferation, promoted apoptosis (P < 0.05), suppressed cell migration and invasion (P < 0.05), decreased Bcl-2 mRNA expression, and increased Bax and Caspase-9 mRNA expression(P < 0.05). Western blotting analysis indicated increased expression of Bax, Caspase-9, and E-cadherin, and decreased expression of Bcl-2, N-cadherin, and Vimentin (P < 0.05). In conclusion, 630 nm laser mediated by HPD promoted cell apoptosis via upregulation of Bax and caspase-9, and downregulation of Bcl-2, and inhibited cell migration and invasion by regulating EMT in H520 cells.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":"39 1","pages":"228"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of 630 nm laser on apoptosis, metastasis, invasion and epithelial-to-mesenchymal transition of human lung squamous cell carcinoma H520 cells mediated by hematoporphyrin derivatives.\",\"authors\":\"Tingting Liu, Enhua Zhang, Shichao Cui, Haoyu Dai, Xiaohui Yang, Cunzhi Lin\",\"doi\":\"10.1007/s10103-024-04176-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) has significant advantages in the treatment of malignant lung tumors. The research on the mechanism of PDT mediated by hematoporphyrin derivatives (HPD) and its cytotoxic effects on lung cancer cells has primarily focused on lung adenocarcinoma cells. However, the impact of HPD-PDT on lung squamous cell carcinoma has not been thoroughly studied. This study aimed to investigate the effects of 630 nm laser on apoptosis, metastasis, invasion, and epithelial-mesenchymal transition (EMT) in human lung squamous cell carcinoma H520 cells mediated by HPD. H520 cells were divided into four groups: control group, photosensitizer group, irradiation group, and HPD-PDT group. Cell proliferation was assessed using CCK8 assay; cell apoptosis was detected by Hoechst 33258 staining and flow cytometry; cell migration and invasion abilities were evaluated using wound-healing and invasion assays; and protein and mRNA expressions were analyzed by Western blot and reverse transcription-polymerase chain reaction (RT-PCR) respectively. Results showed that HPD-PDT significantly inhibited cell proliferation, promoted apoptosis (P < 0.05), suppressed cell migration and invasion (P < 0.05), decreased Bcl-2 mRNA expression, and increased Bax and Caspase-9 mRNA expression(P < 0.05). Western blotting analysis indicated increased expression of Bax, Caspase-9, and E-cadherin, and decreased expression of Bcl-2, N-cadherin, and Vimentin (P < 0.05). In conclusion, 630 nm laser mediated by HPD promoted cell apoptosis via upregulation of Bax and caspase-9, and downregulation of Bcl-2, and inhibited cell migration and invasion by regulating EMT in H520 cells.</p>\",\"PeriodicalId\":17978,\"journal\":{\"name\":\"Lasers in Medical Science\",\"volume\":\"39 1\",\"pages\":\"228\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lasers in Medical Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10103-024-04176-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-024-04176-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Effects of 630 nm laser on apoptosis, metastasis, invasion and epithelial-to-mesenchymal transition of human lung squamous cell carcinoma H520 cells mediated by hematoporphyrin derivatives.
Photodynamic therapy (PDT) has significant advantages in the treatment of malignant lung tumors. The research on the mechanism of PDT mediated by hematoporphyrin derivatives (HPD) and its cytotoxic effects on lung cancer cells has primarily focused on lung adenocarcinoma cells. However, the impact of HPD-PDT on lung squamous cell carcinoma has not been thoroughly studied. This study aimed to investigate the effects of 630 nm laser on apoptosis, metastasis, invasion, and epithelial-mesenchymal transition (EMT) in human lung squamous cell carcinoma H520 cells mediated by HPD. H520 cells were divided into four groups: control group, photosensitizer group, irradiation group, and HPD-PDT group. Cell proliferation was assessed using CCK8 assay; cell apoptosis was detected by Hoechst 33258 staining and flow cytometry; cell migration and invasion abilities were evaluated using wound-healing and invasion assays; and protein and mRNA expressions were analyzed by Western blot and reverse transcription-polymerase chain reaction (RT-PCR) respectively. Results showed that HPD-PDT significantly inhibited cell proliferation, promoted apoptosis (P < 0.05), suppressed cell migration and invasion (P < 0.05), decreased Bcl-2 mRNA expression, and increased Bax and Caspase-9 mRNA expression(P < 0.05). Western blotting analysis indicated increased expression of Bax, Caspase-9, and E-cadherin, and decreased expression of Bcl-2, N-cadherin, and Vimentin (P < 0.05). In conclusion, 630 nm laser mediated by HPD promoted cell apoptosis via upregulation of Bax and caspase-9, and downregulation of Bcl-2, and inhibited cell migration and invasion by regulating EMT in H520 cells.
期刊介绍:
Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics.
The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.