Lia Willow Lehrer, Anna Marie Lewis, Susan Tolliver, Marcia Degen, Rekha Singh, Sara Houser, Jayasimha Rao
{"title":"评估用于检测弗吉尼亚州罗诺克和塞勒姆下水道废水中 2019 年新型冠状病毒核头壳 (N1) 基因的新型快速 qPCR 检测方法。","authors":"Lia Willow Lehrer, Anna Marie Lewis, Susan Tolliver, Marcia Degen, Rekha Singh, Sara Houser, Jayasimha Rao","doi":"10.2166/wh.2024.085","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic initiated public interest in wastewater-based epidemiology (WBE). Public and private entities responded to the need to produce timely and accurate data. LuminUltra and Hach partnered to provide a rapid, field-based quantitative polymerase chain reaction (qPCR) test for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. This study evaluates the Hach GeneCount SARS-CoV-2 Wastewater RT-qPCR Assay Kit and LuminUltra GeneCount<sup>®</sup> Q-16 RT-PCR instrument. The Hach LuminUltra methods were compared to the Promega Wizard<sup>®</sup> Enviro Total Nucleic Acid kit and Bio-Rad CFX Opus 96 Real-time PCR Detection System. Over a 12-week period, wastewater samples were collected weekly from seven locations in the Roanoke/Salem, VA sewersheds. Concentration and extraction of the viral RNA were followed by qPCR analysis. The target gene for detection was the nucleocapsid gene (N1) of the SARS-CoV-2 virus. Costs, ease of use, time to produce results, sample preparation, and data comparisons were considered. The comparison determined that the Hach LuminUltra method and instrument were more affordable, consumed less time, and required less technical expertise. While the new method was specific, it had low sensitivity. This evaluation suggests the Hach LuminUltra method should be reserved for limited situations requiring onsite field analysis where data accuracy is not essential.</p>","PeriodicalId":17436,"journal":{"name":"Journal of water and health","volume":"22 8","pages":"1419-1428"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An evaluation of a new rapid qPCR test for the detection of 2019-novel coronavirus nucleocapsid (N1) gene in wastewater in Roanoke and Salem VA sewersheds.\",\"authors\":\"Lia Willow Lehrer, Anna Marie Lewis, Susan Tolliver, Marcia Degen, Rekha Singh, Sara Houser, Jayasimha Rao\",\"doi\":\"10.2166/wh.2024.085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic initiated public interest in wastewater-based epidemiology (WBE). Public and private entities responded to the need to produce timely and accurate data. LuminUltra and Hach partnered to provide a rapid, field-based quantitative polymerase chain reaction (qPCR) test for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. This study evaluates the Hach GeneCount SARS-CoV-2 Wastewater RT-qPCR Assay Kit and LuminUltra GeneCount<sup>®</sup> Q-16 RT-PCR instrument. The Hach LuminUltra methods were compared to the Promega Wizard<sup>®</sup> Enviro Total Nucleic Acid kit and Bio-Rad CFX Opus 96 Real-time PCR Detection System. Over a 12-week period, wastewater samples were collected weekly from seven locations in the Roanoke/Salem, VA sewersheds. Concentration and extraction of the viral RNA were followed by qPCR analysis. The target gene for detection was the nucleocapsid gene (N1) of the SARS-CoV-2 virus. Costs, ease of use, time to produce results, sample preparation, and data comparisons were considered. The comparison determined that the Hach LuminUltra method and instrument were more affordable, consumed less time, and required less technical expertise. While the new method was specific, it had low sensitivity. This evaluation suggests the Hach LuminUltra method should be reserved for limited situations requiring onsite field analysis where data accuracy is not essential.</p>\",\"PeriodicalId\":17436,\"journal\":{\"name\":\"Journal of water and health\",\"volume\":\"22 8\",\"pages\":\"1419-1428\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of water and health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wh.2024.085\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water and health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wh.2024.085","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An evaluation of a new rapid qPCR test for the detection of 2019-novel coronavirus nucleocapsid (N1) gene in wastewater in Roanoke and Salem VA sewersheds.
The COVID-19 pandemic initiated public interest in wastewater-based epidemiology (WBE). Public and private entities responded to the need to produce timely and accurate data. LuminUltra and Hach partnered to provide a rapid, field-based quantitative polymerase chain reaction (qPCR) test for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. This study evaluates the Hach GeneCount SARS-CoV-2 Wastewater RT-qPCR Assay Kit and LuminUltra GeneCount® Q-16 RT-PCR instrument. The Hach LuminUltra methods were compared to the Promega Wizard® Enviro Total Nucleic Acid kit and Bio-Rad CFX Opus 96 Real-time PCR Detection System. Over a 12-week period, wastewater samples were collected weekly from seven locations in the Roanoke/Salem, VA sewersheds. Concentration and extraction of the viral RNA were followed by qPCR analysis. The target gene for detection was the nucleocapsid gene (N1) of the SARS-CoV-2 virus. Costs, ease of use, time to produce results, sample preparation, and data comparisons were considered. The comparison determined that the Hach LuminUltra method and instrument were more affordable, consumed less time, and required less technical expertise. While the new method was specific, it had low sensitivity. This evaluation suggests the Hach LuminUltra method should be reserved for limited situations requiring onsite field analysis where data accuracy is not essential.
期刊介绍:
Journal of Water and Health is a peer-reviewed journal devoted to the dissemination of information on the health implications and control of waterborne microorganisms and chemical substances in the broadest sense for developing and developed countries worldwide. This is to include microbial toxins, chemical quality and the aesthetic qualities of water.