Dayong Qiu, Yan Zhang, Pinshi Ni, Zhuangzhi Wang, Luodan Yang, Fanghui Li
{"title":"肌肉丰富的 microRNA-486 介导的肌肉萎缩和运动调控。","authors":"Dayong Qiu, Yan Zhang, Pinshi Ni, Zhuangzhi Wang, Luodan Yang, Fanghui Li","doi":"10.1007/s13105-024-01043-w","DOIUrl":null,"url":null,"abstract":"<p><p>The objectives of this review were to understand the impact of microRNA-486 on myogenesis and muscle atrophy, and the change of microRNA-486 following exercise, and provide valuable information for improving muscle atrophy based on exercise intervention targeting microRNA-486. Muscle-enriched microRNAs (miRNAs), also referred to as myomiRs, control various processes in skeletal muscles, from myogenesis and muscle homeostasis to different responses to environmental stimuli such as exercise. MicroRNA-486 is a miRNA in which a stem-loop sequence is embedded within the ANKYRIN1 (ANK1) locus and is strictly conserved across mammals. MicroRNA-486 is involved in the development of muscle atrophy caused by aging, immobility, prolonged exposure to microgravity, or muscular and neuromuscular disorders. PI3K/AKT signaling is a positive pathway, as it increases muscle mass by increasing protein synthesis and decreasing protein degradation. MicroRNA-486 can activate this pathway by inhibiting phosphatase and tensin homolog (PTEN), it may also indirectly inhibit the HIPPO signaling pathway to promote cell growth. Exercises regulate microRNA-486 expression both in blood and muscle. This review focused on the recent elucidation of sarcopenia regulation by microRNA-486 and its effects on pathological states, including primary muscular disease, secondary muscular disorders, and age-related sarcopenia. Additionally, the role of exercise in regulating skeletal muscle-enriched microRNA-486 was highlighted, along with its physiological significance. Growing evidence indicates that microRNA-486 significantly impacts the development of muscle atrophy. MicroRNA-486 has great potential to become a therapeutic target for improving muscle atrophy through exercise intervention.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Muscle-enriched microRNA-486-mediated regulation of muscular atrophy and exercise.\",\"authors\":\"Dayong Qiu, Yan Zhang, Pinshi Ni, Zhuangzhi Wang, Luodan Yang, Fanghui Li\",\"doi\":\"10.1007/s13105-024-01043-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objectives of this review were to understand the impact of microRNA-486 on myogenesis and muscle atrophy, and the change of microRNA-486 following exercise, and provide valuable information for improving muscle atrophy based on exercise intervention targeting microRNA-486. Muscle-enriched microRNAs (miRNAs), also referred to as myomiRs, control various processes in skeletal muscles, from myogenesis and muscle homeostasis to different responses to environmental stimuli such as exercise. MicroRNA-486 is a miRNA in which a stem-loop sequence is embedded within the ANKYRIN1 (ANK1) locus and is strictly conserved across mammals. MicroRNA-486 is involved in the development of muscle atrophy caused by aging, immobility, prolonged exposure to microgravity, or muscular and neuromuscular disorders. PI3K/AKT signaling is a positive pathway, as it increases muscle mass by increasing protein synthesis and decreasing protein degradation. MicroRNA-486 can activate this pathway by inhibiting phosphatase and tensin homolog (PTEN), it may also indirectly inhibit the HIPPO signaling pathway to promote cell growth. Exercises regulate microRNA-486 expression both in blood and muscle. This review focused on the recent elucidation of sarcopenia regulation by microRNA-486 and its effects on pathological states, including primary muscular disease, secondary muscular disorders, and age-related sarcopenia. Additionally, the role of exercise in regulating skeletal muscle-enriched microRNA-486 was highlighted, along with its physiological significance. Growing evidence indicates that microRNA-486 significantly impacts the development of muscle atrophy. MicroRNA-486 has great potential to become a therapeutic target for improving muscle atrophy through exercise intervention.</p>\",\"PeriodicalId\":16779,\"journal\":{\"name\":\"Journal of physiology and biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physiology and biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13105-024-01043-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-024-01043-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Muscle-enriched microRNA-486-mediated regulation of muscular atrophy and exercise.
The objectives of this review were to understand the impact of microRNA-486 on myogenesis and muscle atrophy, and the change of microRNA-486 following exercise, and provide valuable information for improving muscle atrophy based on exercise intervention targeting microRNA-486. Muscle-enriched microRNAs (miRNAs), also referred to as myomiRs, control various processes in skeletal muscles, from myogenesis and muscle homeostasis to different responses to environmental stimuli such as exercise. MicroRNA-486 is a miRNA in which a stem-loop sequence is embedded within the ANKYRIN1 (ANK1) locus and is strictly conserved across mammals. MicroRNA-486 is involved in the development of muscle atrophy caused by aging, immobility, prolonged exposure to microgravity, or muscular and neuromuscular disorders. PI3K/AKT signaling is a positive pathway, as it increases muscle mass by increasing protein synthesis and decreasing protein degradation. MicroRNA-486 can activate this pathway by inhibiting phosphatase and tensin homolog (PTEN), it may also indirectly inhibit the HIPPO signaling pathway to promote cell growth. Exercises regulate microRNA-486 expression both in blood and muscle. This review focused on the recent elucidation of sarcopenia regulation by microRNA-486 and its effects on pathological states, including primary muscular disease, secondary muscular disorders, and age-related sarcopenia. Additionally, the role of exercise in regulating skeletal muscle-enriched microRNA-486 was highlighted, along with its physiological significance. Growing evidence indicates that microRNA-486 significantly impacts the development of muscle atrophy. MicroRNA-486 has great potential to become a therapeutic target for improving muscle atrophy through exercise intervention.
期刊介绍:
The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.