中枢神经系统在哺乳动物衰老和长寿的细胞非自主信号机制中的作用。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Takuya Urushihata, Akiko Satoh
{"title":"中枢神经系统在哺乳动物衰老和长寿的细胞非自主信号机制中的作用。","authors":"Takuya Urushihata, Akiko Satoh","doi":"10.1186/s12576-024-00934-3","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple organs orchestrate the maintenance of proper physiological function in organisms throughout their lifetimes. Recent studies have uncovered that aging and longevity are regulated by cell non-autonomous signaling mechanisms in several organisms. In the brain, particularly in the hypothalamus, aging and longevity are regulated by such cell non-autonomous signaling mechanisms. Several hypothalamic neurons have been identified as regulators of mammalian longevity, and manipulating them promotes lifespan extension or shortens the lifespan in rodent models. The hypothalamic structure and function are evolutionally highly conserved across species. Thus, elucidation of hypothalamic function during the aging process will shed some light on the mechanisms of aging and longevity and, thereby benefiting to human health.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365208/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of the central nervous system in cell non-autonomous signaling mechanisms of aging and longevity in mammals.\",\"authors\":\"Takuya Urushihata, Akiko Satoh\",\"doi\":\"10.1186/s12576-024-00934-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple organs orchestrate the maintenance of proper physiological function in organisms throughout their lifetimes. Recent studies have uncovered that aging and longevity are regulated by cell non-autonomous signaling mechanisms in several organisms. In the brain, particularly in the hypothalamus, aging and longevity are regulated by such cell non-autonomous signaling mechanisms. Several hypothalamic neurons have been identified as regulators of mammalian longevity, and manipulating them promotes lifespan extension or shortens the lifespan in rodent models. The hypothalamic structure and function are evolutionally highly conserved across species. Thus, elucidation of hypothalamic function during the aging process will shed some light on the mechanisms of aging and longevity and, thereby benefiting to human health.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12576-024-00934-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12576-024-00934-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在生物体的整个生命周期中,多个器官协调维持着正常的生理功能。最近的研究发现,在一些生物体内,衰老和长寿受细胞非自主信号机制的调控。在大脑中,尤其是在下丘脑中,衰老和长寿受这种细胞非自主信号机制的调控。目前已发现几个下丘脑神经元是哺乳动物长寿的调节器,在啮齿动物模型中,操纵这些神经元可促进寿命延长或缩短寿命。下丘脑的结构和功能在物种进化中高度保守。因此,阐明下丘脑在衰老过程中的功能将揭示衰老和长寿的机制,从而有益于人类健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of the central nervous system in cell non-autonomous signaling mechanisms of aging and longevity in mammals.

Multiple organs orchestrate the maintenance of proper physiological function in organisms throughout their lifetimes. Recent studies have uncovered that aging and longevity are regulated by cell non-autonomous signaling mechanisms in several organisms. In the brain, particularly in the hypothalamus, aging and longevity are regulated by such cell non-autonomous signaling mechanisms. Several hypothalamic neurons have been identified as regulators of mammalian longevity, and manipulating them promotes lifespan extension or shortens the lifespan in rodent models. The hypothalamic structure and function are evolutionally highly conserved across species. Thus, elucidation of hypothalamic function during the aging process will shed some light on the mechanisms of aging and longevity and, thereby benefiting to human health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信