大脑皮层和主要皮层下结构的定量磁感应强度成像指标的可靠性。

IF 2.3 4区 医学 Q3 CLINICAL NEUROLOGY
Maria Agnese Pirozzi, Antonietta Canna, Federica Di Nardo, Mario Sansone, Francesca Trojsi, Mario Cirillo, Fabrizio Esposito
{"title":"大脑皮层和主要皮层下结构的定量磁感应强度成像指标的可靠性。","authors":"Maria Agnese Pirozzi,&nbsp;Antonietta Canna,&nbsp;Federica Di Nardo,&nbsp;Mario Sansone,&nbsp;Francesca Trojsi,&nbsp;Mario Cirillo,&nbsp;Fabrizio Esposito","doi":"10.1111/jon.13234","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and purpose</h3>\n \n <p>Susceptibility estimates derived from quantitative susceptibility mapping (QSM) images for the cerebral cortex and major subcortical structures are variably reported in brain magnetic resonance imaging (MRI) studies, as average of all (<span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>all</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{{\\mathrm{all}}}}$</annotation>\n </semantics></math>), absolute (<span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>abs</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{{\\mathrm{abs}}}}$</annotation>\n </semantics></math>), or positive- (<span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>p</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{\\mathrm{p}}}$</annotation>\n </semantics></math>) and negative-only (<span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>n</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{\\mathrm{n}}}$</annotation>\n </semantics></math>) susceptibility values using a region of interest (ROI) approach.</p>\n \n <p>This pilot study presents a reliability analysis of currently used ROI-QSM metrics and an alternative ROI-based approach to obtain voxel-weighted ROI-QSM metrics (<span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>wp</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{{\\mathrm{wp}}}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>wn</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{{\\mathrm{wn}}}}$</annotation>\n </semantics></math>).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Ten healthy subjects underwent repeated (test-retest) 3-dimensional multi-echo gradient-echo (3DMEGE) 3 Tesla MRI measurements. Complex-valued 3DMEGE images were acquired and reconstructed with slice thicknesses of 1 and 2 mm (3DMEGE1, 3DMEGE2) along with 3DT1-weighted isometric (voxel 1 mm<sup>3</sup>) images for independent registration and ROI segmentation.</p>\n \n <p>Agreement, consistency, and reproducibility of ROI-QSM metrics were assessed through Bland-Altman analysis, intraclass correlation coefficient, and interscan and intersubject coefficient of variation (CoV).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>All ROI-QSM metrics exhibited good to excellent consistency and test-retest agreement with no proportional bias. Interscan CoV was higher for <span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>all</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{{\\mathrm{all}}}}$</annotation>\n </semantics></math> in comparison to the other metrics where it was below 15%, in both 3DMEGE1 and 3DMEGE2 datasets. Intersubject CoV for <span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>all</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{{\\mathrm{all}}}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>abs</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{{\\mathrm{abs}}}}$</annotation>\n </semantics></math> exceeded 50% in all ROIs.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Among the evaluated ROI-QSM metrics, <span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>all</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{{\\mathrm{all}}}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>abs</mi>\n </msub>\n <annotation>${{{{\\mu}}}_{{\\mathrm{abs}}}}$</annotation>\n </semantics></math> estimates were less reliable, whereas separating positive and negative values (using <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>μ</mi>\n <mi>p</mi>\n </msub>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mi>μ</mi>\n <mi>n</mi>\n </msub>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mi>μ</mi>\n <mi>wp</mi>\n </msub>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mi>μ</mi>\n <mi>wn</mi>\n </msub>\n </mrow>\n <annotation>${{{{\\mu}}}_{\\mathrm{p}}},\\ {{{{\\mu}}}_{\\mathrm{n}}},\\ {{{{\\mu}}}_{{\\mathrm{wp}}}},\\ {{{{\\mu}}}_{{\\mathrm{wn}}}}$</annotation>\n </semantics></math>) improved the reproducibility within, and the comparability between, subjects, even when reducing the slice thickness. These preliminary findings may offer valuable insights toward standardizing ROI-QSM metrics across different patient cohorts and imaging settings in future clinical MRI studies.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 6","pages":"720-731"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13234","citationCount":"0","resultStr":"{\"title\":\"Reliability of quantitative magnetic susceptibility imaging metrics for cerebral cortex and major subcortical structures\",\"authors\":\"Maria Agnese Pirozzi,&nbsp;Antonietta Canna,&nbsp;Federica Di Nardo,&nbsp;Mario Sansone,&nbsp;Francesca Trojsi,&nbsp;Mario Cirillo,&nbsp;Fabrizio Esposito\",\"doi\":\"10.1111/jon.13234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and purpose</h3>\\n \\n <p>Susceptibility estimates derived from quantitative susceptibility mapping (QSM) images for the cerebral cortex and major subcortical structures are variably reported in brain magnetic resonance imaging (MRI) studies, as average of all (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>all</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{{\\\\mathrm{all}}}}$</annotation>\\n </semantics></math>), absolute (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>abs</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{{\\\\mathrm{abs}}}}$</annotation>\\n </semantics></math>), or positive- (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{\\\\mathrm{p}}}$</annotation>\\n </semantics></math>) and negative-only (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{\\\\mathrm{n}}}$</annotation>\\n </semantics></math>) susceptibility values using a region of interest (ROI) approach.</p>\\n \\n <p>This pilot study presents a reliability analysis of currently used ROI-QSM metrics and an alternative ROI-based approach to obtain voxel-weighted ROI-QSM metrics (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>wp</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{{\\\\mathrm{wp}}}}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>wn</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{{\\\\mathrm{wn}}}}$</annotation>\\n </semantics></math>).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Ten healthy subjects underwent repeated (test-retest) 3-dimensional multi-echo gradient-echo (3DMEGE) 3 Tesla MRI measurements. Complex-valued 3DMEGE images were acquired and reconstructed with slice thicknesses of 1 and 2 mm (3DMEGE1, 3DMEGE2) along with 3DT1-weighted isometric (voxel 1 mm<sup>3</sup>) images for independent registration and ROI segmentation.</p>\\n \\n <p>Agreement, consistency, and reproducibility of ROI-QSM metrics were assessed through Bland-Altman analysis, intraclass correlation coefficient, and interscan and intersubject coefficient of variation (CoV).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>All ROI-QSM metrics exhibited good to excellent consistency and test-retest agreement with no proportional bias. Interscan CoV was higher for <span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>all</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{{\\\\mathrm{all}}}}$</annotation>\\n </semantics></math> in comparison to the other metrics where it was below 15%, in both 3DMEGE1 and 3DMEGE2 datasets. Intersubject CoV for <span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>all</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{{\\\\mathrm{all}}}}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>abs</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{{\\\\mathrm{abs}}}}$</annotation>\\n </semantics></math> exceeded 50% in all ROIs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Among the evaluated ROI-QSM metrics, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>all</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{{\\\\mathrm{all}}}}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>abs</mi>\\n </msub>\\n <annotation>${{{{\\\\mu}}}_{{\\\\mathrm{abs}}}}$</annotation>\\n </semantics></math> estimates were less reliable, whereas separating positive and negative values (using <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>μ</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msub>\\n <mi>μ</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msub>\\n <mi>μ</mi>\\n <mi>wp</mi>\\n </msub>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msub>\\n <mi>μ</mi>\\n <mi>wn</mi>\\n </msub>\\n </mrow>\\n <annotation>${{{{\\\\mu}}}_{\\\\mathrm{p}}},\\\\ {{{{\\\\mu}}}_{\\\\mathrm{n}}},\\\\ {{{{\\\\mu}}}_{{\\\\mathrm{wp}}}},\\\\ {{{{\\\\mu}}}_{{\\\\mathrm{wn}}}}$</annotation>\\n </semantics></math>) improved the reproducibility within, and the comparability between, subjects, even when reducing the slice thickness. These preliminary findings may offer valuable insights toward standardizing ROI-QSM metrics across different patient cohorts and imaging settings in future clinical MRI studies.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 6\",\"pages\":\"720-731\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13234\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13234\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13234","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:在脑磁共振成像(MRI)研究中,根据定量易感度图(QSM)图像得出的大脑皮层和主要皮层下结构的易感度估计值被不同程度地报告为所有的平均值(μ all ${{{{\mu}}}_{\mathrm{all}}}}$ )、绝对值(μ abs ${{{{\mu}}}_{\mathrm{abs}}}}$ ),或使用感兴趣区(ROI)方法的正感(μ p ${{{{\mu}}}_{\mathrm{p}}$ )和负感(μ n ${{{{\mu}}}_{\mathrm{n}}$ )。本试验研究对目前使用的ROI-QSM指标和另一种基于ROI的方法进行了可靠性分析,以获得体素加权的ROI-QSM指标(μ wp ${{{{\mu}}}_{{mathrm{wp}}}}$ 和 μ wn ${{{{\mu}}}_{\mathrm{wn}}}}$ )。方法:十名健康受试者接受了重复(测试-再测试)三维多回波梯度回波(3DMEGE)3 特斯拉磁共振成像测量。采集并重建了切片厚度为 1 毫米和 2 毫米的复值 3DMEGE 图像(3DMEGE1、3DMEGE2)以及 3DT1 加权等距(体素 1 mm3)图像,用于独立配准和 ROI 分割。通过Bland-Altman分析、类内相关系数、扫描间和受试者间变异系数(CoV)评估了ROI-QSM指标的一致性、再现性和可重复性:结果:所有 ROI-QSM 指标都表现出良好到卓越的一致性和测试-再测试一致性,没有比例偏差。在3DMEGE1和3DMEGE2数据集中,μ all ${{{{\mu}}}_{\mathrm{all}}}}$的扫描间变异系数高于其他指标,后者低于15%。在所有ROI中,μ all ${{{{\mu}}_{\mathrm{all}}}}$ 和 μ abs ${{{{\mu}}_{\mathrm{abs}}}}$ 的受试者间CoV都超过了50%.结论:在所评估的 ROI-QSM 指标中,μ all ${{{{\mu}}_{{mathrm{all}}}}$ 和 μ abs ${{{{\mu}}_{{mathrm{abs}}}}$ 估计值的可靠性较低,而正负值分离(使用 μ p , μ n , μ wp 、 μ wn ${{{{\mu}}}_{\mathrm{p}}},\ {{{{\mu}}}_{\mathrm{n}}},\ {{{{\mu}}}_{\mathrm{wp}}}},\ {{{{\mu}}}_{\mathrm{wn}}}}$ )提高了受试者内部的可重复性和受试者之间的可比性,即使在减少切片厚度的情况下也是如此。这些初步研究结果可能会为未来临床磁共振成像研究中不同患者群和成像环境下的ROI-QSM指标标准化提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reliability of quantitative magnetic susceptibility imaging metrics for cerebral cortex and major subcortical structures

Reliability of quantitative magnetic susceptibility imaging metrics for cerebral cortex and major subcortical structures

Background and purpose

Susceptibility estimates derived from quantitative susceptibility mapping (QSM) images for the cerebral cortex and major subcortical structures are variably reported in brain magnetic resonance imaging (MRI) studies, as average of all ( μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ ), absolute ( μ abs ${{{{\mu}}}_{{\mathrm{abs}}}}$ ), or positive- ( μ p ${{{{\mu}}}_{\mathrm{p}}}$ ) and negative-only ( μ n ${{{{\mu}}}_{\mathrm{n}}}$ ) susceptibility values using a region of interest (ROI) approach.

This pilot study presents a reliability analysis of currently used ROI-QSM metrics and an alternative ROI-based approach to obtain voxel-weighted ROI-QSM metrics ( μ wp ${{{{\mu}}}_{{\mathrm{wp}}}}$ and μ wn ${{{{\mu}}}_{{\mathrm{wn}}}}$ ).

Methods

Ten healthy subjects underwent repeated (test-retest) 3-dimensional multi-echo gradient-echo (3DMEGE) 3 Tesla MRI measurements. Complex-valued 3DMEGE images were acquired and reconstructed with slice thicknesses of 1 and 2 mm (3DMEGE1, 3DMEGE2) along with 3DT1-weighted isometric (voxel 1 mm3) images for independent registration and ROI segmentation.

Agreement, consistency, and reproducibility of ROI-QSM metrics were assessed through Bland-Altman analysis, intraclass correlation coefficient, and interscan and intersubject coefficient of variation (CoV).

Results

All ROI-QSM metrics exhibited good to excellent consistency and test-retest agreement with no proportional bias. Interscan CoV was higher for μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ in comparison to the other metrics where it was below 15%, in both 3DMEGE1 and 3DMEGE2 datasets. Intersubject CoV for μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ and μ abs ${{{{\mu}}}_{{\mathrm{abs}}}}$ exceeded 50% in all ROIs.

Conclusions

Among the evaluated ROI-QSM metrics, μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ and μ abs ${{{{\mu}}}_{{\mathrm{abs}}}}$ estimates were less reliable, whereas separating positive and negative values (using μ p , μ n , μ wp , μ wn ${{{{\mu}}}_{\mathrm{p}}},\ {{{{\mu}}}_{\mathrm{n}}},\ {{{{\mu}}}_{{\mathrm{wp}}}},\ {{{{\mu}}}_{{\mathrm{wn}}}}$ ) improved the reproducibility within, and the comparability between, subjects, even when reducing the slice thickness. These preliminary findings may offer valuable insights toward standardizing ROI-QSM metrics across different patient cohorts and imaging settings in future clinical MRI studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroimaging
Journal of Neuroimaging 医学-核医学
CiteScore
4.70
自引率
0.00%
发文量
117
审稿时长
6-12 weeks
期刊介绍: Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on: MRI CT Carotid Ultrasound and TCD SPECT PET Endovascular Surgical Neuroradiology Functional MRI Xenon CT and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信