Lalita Pal, Eduard Belausov, Vikas Dwivedi, Sela Yechezkel, Einat Sadot
{"title":"微管和皮质ER对其协调组织的相互影响","authors":"Lalita Pal, Eduard Belausov, Vikas Dwivedi, Sela Yechezkel, Einat Sadot","doi":"10.1111/jmi.13356","DOIUrl":null,"url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) is the largest organelle in terms of membrane content, occupying the entire cytoplasmic volume. It is tethered to the cell cortex through ER-plasma membrane contact sites (EPCS). Previous studies have shown that EPCSs labelled by VAP27 align with cortical microtubules, and that ER tubules elongate along microtubules. Here, we addressed the question whether this relationship is bidirectional, with EPCSs influencing microtubule organisation. Using TIRF microscopy to track EPCSs and microtubule dynamics simultaneously, we demonstrate that while EPCSs remain stable, microtubules are highly dynamic and can adjust their positioning based on nearby EPCS in Arabidopsis cotyledon epidermis. In lobes of epidermal cells enclosed by two indentations, where microtubules bundle together, EPCSs flank the bundles and exhibit a distinctive arrangement, forming symmetric arcs in relation to the lobe axis. In guard cells, transversely oriented ER tubules co-align with microtubules. Disrupting microtubules with the drug oryzalin leads to transient guard cells-ER remodelling, followed by its reorganisation into transverse tubules before microtubule recovery. Taken together our observations suggest, that the positioning of EPCSs and cortical microtubules, can affect each other and the organisation of cortical ER.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mutual influence of microtubules and the cortical ER on their coordinated organisation.\",\"authors\":\"Lalita Pal, Eduard Belausov, Vikas Dwivedi, Sela Yechezkel, Einat Sadot\",\"doi\":\"10.1111/jmi.13356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endoplasmic reticulum (ER) is the largest organelle in terms of membrane content, occupying the entire cytoplasmic volume. It is tethered to the cell cortex through ER-plasma membrane contact sites (EPCS). Previous studies have shown that EPCSs labelled by VAP27 align with cortical microtubules, and that ER tubules elongate along microtubules. Here, we addressed the question whether this relationship is bidirectional, with EPCSs influencing microtubule organisation. Using TIRF microscopy to track EPCSs and microtubule dynamics simultaneously, we demonstrate that while EPCSs remain stable, microtubules are highly dynamic and can adjust their positioning based on nearby EPCS in Arabidopsis cotyledon epidermis. In lobes of epidermal cells enclosed by two indentations, where microtubules bundle together, EPCSs flank the bundles and exhibit a distinctive arrangement, forming symmetric arcs in relation to the lobe axis. In guard cells, transversely oriented ER tubules co-align with microtubules. Disrupting microtubules with the drug oryzalin leads to transient guard cells-ER remodelling, followed by its reorganisation into transverse tubules before microtubule recovery. Taken together our observations suggest, that the positioning of EPCSs and cortical microtubules, can affect each other and the organisation of cortical ER.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13356\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13356","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The mutual influence of microtubules and the cortical ER on their coordinated organisation.
The endoplasmic reticulum (ER) is the largest organelle in terms of membrane content, occupying the entire cytoplasmic volume. It is tethered to the cell cortex through ER-plasma membrane contact sites (EPCS). Previous studies have shown that EPCSs labelled by VAP27 align with cortical microtubules, and that ER tubules elongate along microtubules. Here, we addressed the question whether this relationship is bidirectional, with EPCSs influencing microtubule organisation. Using TIRF microscopy to track EPCSs and microtubule dynamics simultaneously, we demonstrate that while EPCSs remain stable, microtubules are highly dynamic and can adjust their positioning based on nearby EPCS in Arabidopsis cotyledon epidermis. In lobes of epidermal cells enclosed by two indentations, where microtubules bundle together, EPCSs flank the bundles and exhibit a distinctive arrangement, forming symmetric arcs in relation to the lobe axis. In guard cells, transversely oriented ER tubules co-align with microtubules. Disrupting microtubules with the drug oryzalin leads to transient guard cells-ER remodelling, followed by its reorganisation into transverse tubules before microtubule recovery. Taken together our observations suggest, that the positioning of EPCSs and cortical microtubules, can affect each other and the organisation of cortical ER.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.