Mridul Johari, Ana Topf, Chiara Folland, Jennifer Duff, Lein Dofash, Pilar Marti, Thomas Robertson, Juan Vilchez, Anita Cairns, Elizabeth Harris, Chiara Marini-Bettolo, Khalid Hundallah, Amal M Alhashem, Mohammed Al-Owain, Reza Maroofian, Gianina Ravenscroft, Volker Straub
{"title":"JPH1的功能缺失变体会导致先天性肌病,并伴有明显的面部和眼部受累。","authors":"Mridul Johari, Ana Topf, Chiara Folland, Jennifer Duff, Lein Dofash, Pilar Marti, Thomas Robertson, Juan Vilchez, Anita Cairns, Elizabeth Harris, Chiara Marini-Bettolo, Khalid Hundallah, Amal M Alhashem, Mohammed Al-Owain, Reza Maroofian, Gianina Ravenscroft, Volker Straub","doi":"10.1136/jmg-2024-109970","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Weakness of facial, ocular and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca<sup>2+</sup> homeostasis can contribute to disease pathology.</p><p><strong>Methods: </strong>We analysed exome and genome sequencing data from four unrelated individuals with congenital myopathy characterised by facial, ocular and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-sequencing (RNA-seq) data of F3-II.1 and performed gene expression outlier analysis in 129 samples.</p><p><strong>Results: </strong>The four probands had a remarkably similar clinical presentation with prominent facial, ocular and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatigability. Muscle biopsy on light microscopy showed type 1 myofiber predominance and ultrastructural analysis revealed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum.DNA sequencing identified four unique homozygous loss-of-function variants in <i>JPH1</i>, encoding junctophilin-1 in the four families; one stop-gain (c.354C>A;p.Tyr118*) and three frameshift (c.373delG;p.Asp125Thrfs*30, c.1738delC;p.Leu580Trpfs*16 and c.1510delG;p. Glu504Serfs*3) variants. Muscle RNA-seq showed strong downregulation of <i>JPH1</i> in the F3 proband.</p><p><strong>Conclusions: </strong>Junctophilin-1 is critical for the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of <i>JPH1</i> results in a congenital myopathy with prominent facial, bulbar and ocular involvement.</p>","PeriodicalId":16237,"journal":{"name":"Journal of Medical Genetics","volume":" ","pages":"992-998"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503096/pdf/","citationCount":"0","resultStr":"{\"title\":\"Loss-of-function variants in <i>JPH1</i> cause congenital myopathy with prominent facial and ocular involvement.\",\"authors\":\"Mridul Johari, Ana Topf, Chiara Folland, Jennifer Duff, Lein Dofash, Pilar Marti, Thomas Robertson, Juan Vilchez, Anita Cairns, Elizabeth Harris, Chiara Marini-Bettolo, Khalid Hundallah, Amal M Alhashem, Mohammed Al-Owain, Reza Maroofian, Gianina Ravenscroft, Volker Straub\",\"doi\":\"10.1136/jmg-2024-109970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Weakness of facial, ocular and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca<sup>2+</sup> homeostasis can contribute to disease pathology.</p><p><strong>Methods: </strong>We analysed exome and genome sequencing data from four unrelated individuals with congenital myopathy characterised by facial, ocular and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-sequencing (RNA-seq) data of F3-II.1 and performed gene expression outlier analysis in 129 samples.</p><p><strong>Results: </strong>The four probands had a remarkably similar clinical presentation with prominent facial, ocular and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatigability. Muscle biopsy on light microscopy showed type 1 myofiber predominance and ultrastructural analysis revealed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum.DNA sequencing identified four unique homozygous loss-of-function variants in <i>JPH1</i>, encoding junctophilin-1 in the four families; one stop-gain (c.354C>A;p.Tyr118*) and three frameshift (c.373delG;p.Asp125Thrfs*30, c.1738delC;p.Leu580Trpfs*16 and c.1510delG;p. Glu504Serfs*3) variants. Muscle RNA-seq showed strong downregulation of <i>JPH1</i> in the F3 proband.</p><p><strong>Conclusions: </strong>Junctophilin-1 is critical for the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of <i>JPH1</i> results in a congenital myopathy with prominent facial, bulbar and ocular involvement.</p>\",\"PeriodicalId\":16237,\"journal\":{\"name\":\"Journal of Medical Genetics\",\"volume\":\" \",\"pages\":\"992-998\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503096/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jmg-2024-109970\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jmg-2024-109970","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Loss-of-function variants in JPH1 cause congenital myopathy with prominent facial and ocular involvement.
Background: Weakness of facial, ocular and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca2+ homeostasis can contribute to disease pathology.
Methods: We analysed exome and genome sequencing data from four unrelated individuals with congenital myopathy characterised by facial, ocular and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-sequencing (RNA-seq) data of F3-II.1 and performed gene expression outlier analysis in 129 samples.
Results: The four probands had a remarkably similar clinical presentation with prominent facial, ocular and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatigability. Muscle biopsy on light microscopy showed type 1 myofiber predominance and ultrastructural analysis revealed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum.DNA sequencing identified four unique homozygous loss-of-function variants in JPH1, encoding junctophilin-1 in the four families; one stop-gain (c.354C>A;p.Tyr118*) and three frameshift (c.373delG;p.Asp125Thrfs*30, c.1738delC;p.Leu580Trpfs*16 and c.1510delG;p. Glu504Serfs*3) variants. Muscle RNA-seq showed strong downregulation of JPH1 in the F3 proband.
Conclusions: Junctophilin-1 is critical for the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of JPH1 results in a congenital myopathy with prominent facial, bulbar and ocular involvement.
期刊介绍:
Journal of Medical Genetics is a leading international peer-reviewed journal covering original research in human genetics, including reviews of and opinion on the latest developments. Articles cover the molecular basis of human disease including germline cancer genetics, clinical manifestations of genetic disorders, applications of molecular genetics to medical practice and the systematic evaluation of such applications worldwide.