Allan L Coates, Myrtha E Reyna, Cathy C Doyle, Mark W Nagel
{"title":"甲氧胆碱诱发浓度的参考值是否适合儿童?","authors":"Allan L Coates, Myrtha E Reyna, Cathy C Doyle, Mark W Nagel","doi":"10.1089/jamp.2024.0012","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Preliminary data in a randomly selected pediatric cohort study in 8-year-olds suggested a rate of positivity to a methacholine challenge test that was unexpectedly high, roughly 30%. The current recommendation for a negative methacholine test is a 20% decrease in the forced expiratory volume in one second at a dose greater than 400 μg. This was derived from studies in adults using the obsolete English Wright nebulizer. One explanation for the high incidence of positivity in the study in 8-year-olds could be that children deposit more methacholine on a μg/kg basis than adults, due to differences in their breathing patterns. The purpose of this study was to determine if pediatric breathing patterns could result in a higher dose of methacholine depositing in the lungs of children based on μg/kg body weight compared with adults. <b><i>Methods:</i></b> An AeroEclipse Breath Actuated nebulizer delivered methacholine aerosol, generated from a 16 mg/mL solution, for one minute, using age-appropriate breathing patterns for a 70 kg adult and a 30 and 50 kg child produced by a breathing simulator. Predicted lung deposition was calculated from the collected dose of methacholine on a filter placed at the nebulizer outport, multiplied by the fraction of the aerosol mass contained in particles ≤5 μm. The dose of methacholine on the inspiratory filter was assayed by high performance liquid chromatography (HPLC). Particle size was measured using laser diffraction technology. <b><i>Results:</i></b> The mean (95% confidence intervals) predicted pulmonary dose of methacholine was 46.1 (45.4, 46.8), 48.6 (45.3, 51.9), and 36.1 (34.2, 37.9) μg/kg body weight for the 30 kg child, 50 kg child, and 70 kg adult, respectively. <b><i>Conclusions:</i></b> On a μg/kg body weight, the predicted pulmonary dose of methacholine was greater with the pediatric breathing patterns than with the adult pattern.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502631/pdf/","citationCount":"0","resultStr":"{\"title\":\"Are the Reference Values for the Provocative Concentration of Methacholine Appropriate for Children?\",\"authors\":\"Allan L Coates, Myrtha E Reyna, Cathy C Doyle, Mark W Nagel\",\"doi\":\"10.1089/jamp.2024.0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Preliminary data in a randomly selected pediatric cohort study in 8-year-olds suggested a rate of positivity to a methacholine challenge test that was unexpectedly high, roughly 30%. The current recommendation for a negative methacholine test is a 20% decrease in the forced expiratory volume in one second at a dose greater than 400 μg. This was derived from studies in adults using the obsolete English Wright nebulizer. One explanation for the high incidence of positivity in the study in 8-year-olds could be that children deposit more methacholine on a μg/kg basis than adults, due to differences in their breathing patterns. The purpose of this study was to determine if pediatric breathing patterns could result in a higher dose of methacholine depositing in the lungs of children based on μg/kg body weight compared with adults. <b><i>Methods:</i></b> An AeroEclipse Breath Actuated nebulizer delivered methacholine aerosol, generated from a 16 mg/mL solution, for one minute, using age-appropriate breathing patterns for a 70 kg adult and a 30 and 50 kg child produced by a breathing simulator. Predicted lung deposition was calculated from the collected dose of methacholine on a filter placed at the nebulizer outport, multiplied by the fraction of the aerosol mass contained in particles ≤5 μm. The dose of methacholine on the inspiratory filter was assayed by high performance liquid chromatography (HPLC). Particle size was measured using laser diffraction technology. <b><i>Results:</i></b> The mean (95% confidence intervals) predicted pulmonary dose of methacholine was 46.1 (45.4, 46.8), 48.6 (45.3, 51.9), and 36.1 (34.2, 37.9) μg/kg body weight for the 30 kg child, 50 kg child, and 70 kg adult, respectively. <b><i>Conclusions:</i></b> On a μg/kg body weight, the predicted pulmonary dose of methacholine was greater with the pediatric breathing patterns than with the adult pattern.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/jamp.2024.0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2024.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Are the Reference Values for the Provocative Concentration of Methacholine Appropriate for Children?
Background: Preliminary data in a randomly selected pediatric cohort study in 8-year-olds suggested a rate of positivity to a methacholine challenge test that was unexpectedly high, roughly 30%. The current recommendation for a negative methacholine test is a 20% decrease in the forced expiratory volume in one second at a dose greater than 400 μg. This was derived from studies in adults using the obsolete English Wright nebulizer. One explanation for the high incidence of positivity in the study in 8-year-olds could be that children deposit more methacholine on a μg/kg basis than adults, due to differences in their breathing patterns. The purpose of this study was to determine if pediatric breathing patterns could result in a higher dose of methacholine depositing in the lungs of children based on μg/kg body weight compared with adults. Methods: An AeroEclipse Breath Actuated nebulizer delivered methacholine aerosol, generated from a 16 mg/mL solution, for one minute, using age-appropriate breathing patterns for a 70 kg adult and a 30 and 50 kg child produced by a breathing simulator. Predicted lung deposition was calculated from the collected dose of methacholine on a filter placed at the nebulizer outport, multiplied by the fraction of the aerosol mass contained in particles ≤5 μm. The dose of methacholine on the inspiratory filter was assayed by high performance liquid chromatography (HPLC). Particle size was measured using laser diffraction technology. Results: The mean (95% confidence intervals) predicted pulmonary dose of methacholine was 46.1 (45.4, 46.8), 48.6 (45.3, 51.9), and 36.1 (34.2, 37.9) μg/kg body weight for the 30 kg child, 50 kg child, and 70 kg adult, respectively. Conclusions: On a μg/kg body weight, the predicted pulmonary dose of methacholine was greater with the pediatric breathing patterns than with the adult pattern.