Jeong-Won Kim, Ji-Soo Jeong, Jin-Hwa Kim, Chang-Yeop Kim, Eun-Hye Chung, Je-Won Ko, Tae-Won Kim
{"title":"姜黄提取物通过氧化应激驱动的 MAPKs/MMPs 通路缓解气道炎症。","authors":"Jeong-Won Kim, Ji-Soo Jeong, Jin-Hwa Kim, Chang-Yeop Kim, Eun-Hye Chung, Je-Won Ko, Tae-Won Kim","doi":"10.1016/j.intimp.2024.113018","DOIUrl":null,"url":null,"abstract":"<p><p>Turmeric (Curcuma longa L.) extract (CLE) has been shown to elicit several pharmacological properties and is widely used in Asian traditional medicine. Herein, we assessed the impact of CLE on airway inflammation in BALB/c mice and A549 cells to clarify the underlying mechanism. An asthmatic mouse model was established by administering ovalbumin (OVA). CLE (100 or 300 mg/kg/day) was orally administered daily from days 18 to 23, with dexamethasone (3 mg/kg/day) used as the positive control. Human airway epithelial cells, A549, were stimulated using recombinant tumor necrosis factor-α. The CLE100 and CLE400 groups exhibited a significant downregulation in eosinophil counts, cytokine levels, and immunoglobulin-E levels. Moreover, CLE administration dose-dependently suppressed oxidative stress and airway inflammation in the lung tissue. CLE administration inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the expression and activity of matrix metalloproteinase (MMP)-9. In vitro, CLE treatment reduced mRNA levels of proinflammatory cytokines, MAPK phosphorylation, and the expression and activity of MMP-2 and MMP-9. Additionally, 50 µg/mL CLE and 2.5 µg/mL curcumin showed similar anti-inflammatory effects. Collectively, our findings revealed that CLE could suppress airway inflammation in asthmatic mice and A549 cells via oxidative stress-driven MAPK/MMPs signaling, suggesting that CLE could be developed as a potential treatment option for patients with asthma.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turmeric extract alleviates airway inflammation via oxidative stress-driven MAPKs/MMPs pathway.\",\"authors\":\"Jeong-Won Kim, Ji-Soo Jeong, Jin-Hwa Kim, Chang-Yeop Kim, Eun-Hye Chung, Je-Won Ko, Tae-Won Kim\",\"doi\":\"10.1016/j.intimp.2024.113018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Turmeric (Curcuma longa L.) extract (CLE) has been shown to elicit several pharmacological properties and is widely used in Asian traditional medicine. Herein, we assessed the impact of CLE on airway inflammation in BALB/c mice and A549 cells to clarify the underlying mechanism. An asthmatic mouse model was established by administering ovalbumin (OVA). CLE (100 or 300 mg/kg/day) was orally administered daily from days 18 to 23, with dexamethasone (3 mg/kg/day) used as the positive control. Human airway epithelial cells, A549, were stimulated using recombinant tumor necrosis factor-α. The CLE100 and CLE400 groups exhibited a significant downregulation in eosinophil counts, cytokine levels, and immunoglobulin-E levels. Moreover, CLE administration dose-dependently suppressed oxidative stress and airway inflammation in the lung tissue. CLE administration inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the expression and activity of matrix metalloproteinase (MMP)-9. In vitro, CLE treatment reduced mRNA levels of proinflammatory cytokines, MAPK phosphorylation, and the expression and activity of MMP-2 and MMP-9. Additionally, 50 µg/mL CLE and 2.5 µg/mL curcumin showed similar anti-inflammatory effects. Collectively, our findings revealed that CLE could suppress airway inflammation in asthmatic mice and A549 cells via oxidative stress-driven MAPK/MMPs signaling, suggesting that CLE could be developed as a potential treatment option for patients with asthma.</p>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.intimp.2024.113018\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2024.113018","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Turmeric extract alleviates airway inflammation via oxidative stress-driven MAPKs/MMPs pathway.
Turmeric (Curcuma longa L.) extract (CLE) has been shown to elicit several pharmacological properties and is widely used in Asian traditional medicine. Herein, we assessed the impact of CLE on airway inflammation in BALB/c mice and A549 cells to clarify the underlying mechanism. An asthmatic mouse model was established by administering ovalbumin (OVA). CLE (100 or 300 mg/kg/day) was orally administered daily from days 18 to 23, with dexamethasone (3 mg/kg/day) used as the positive control. Human airway epithelial cells, A549, were stimulated using recombinant tumor necrosis factor-α. The CLE100 and CLE400 groups exhibited a significant downregulation in eosinophil counts, cytokine levels, and immunoglobulin-E levels. Moreover, CLE administration dose-dependently suppressed oxidative stress and airway inflammation in the lung tissue. CLE administration inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the expression and activity of matrix metalloproteinase (MMP)-9. In vitro, CLE treatment reduced mRNA levels of proinflammatory cytokines, MAPK phosphorylation, and the expression and activity of MMP-2 and MMP-9. Additionally, 50 µg/mL CLE and 2.5 µg/mL curcumin showed similar anti-inflammatory effects. Collectively, our findings revealed that CLE could suppress airway inflammation in asthmatic mice and A549 cells via oxidative stress-driven MAPK/MMPs signaling, suggesting that CLE could be developed as a potential treatment option for patients with asthma.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.