{"title":"NEK1单倍体缺陷会加重C9ORF72患者衍生的iPSC-motoneurons中的DNA损伤,但不会加重纤毛生成缺陷。","authors":"Serena Santangelo, Sabrina Invernizzi, Marta Nice Sorce, Valeria Casiraghi, Silvia Peverelli, Alberto Brusati, Claudia Colombrita, Nicola Ticozzi, Vincenzo Silani, Patrizia Bossolasco, Antonia Ratti","doi":"10.1093/hmg/ddae121","DOIUrl":null,"url":null,"abstract":"<p><p>The hexanucleotide G4C2 repeat expansion (HRE) in C9ORF72 gene is the major cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to both loss- and gain-of-function pathomechanisms. The wide clinical heterogeneity among C9ORF72 patients suggests potential modifying genetic and epigenetic factors. Notably, C9ORF72 HRE often co-occurs with other rare variants in ALS/FTD-associated genes, such as NEK1, which encodes for a kinase involved in multiple cell pathways, including DNA damage response and ciliogenesis. In this study, we generated induced pluripotent stem cells (iPSCs) and differentiated motoneurons (iPSC-MNs) from an ALS patient carrying both C9ORF72 HRE and a NEK1 loss-of-function mutation to investigate the biological effect of NEK1 haploinsufficiency on C9ORF72 pathology in a condition of oligogenicity. Double mutant C9ORF72/NEK1 cells showed increased pathological C9ORF72 RNA foci in iPSCs and higher DNA damage levels in iPSC-MNs compared to single mutant C9ORF72 cells, but no effect on DNA damage response. When we analysed the primary cilium, we observed a defective ciliogenesis in C9ORF72 iPSC-MNs which was not worsened by NEK1 haploinsufficiency in the double mutant iPSC-MNs. Altogether, our study shows that NEK1 haploinsufficiency influences differently DNA damage and cilia length, potentially acting as a modifier at biological level in an in vitro ALS patient-derived disease model of C9ORF72 pathology.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540924/pdf/","citationCount":"0","resultStr":"{\"title\":\"NEK1 haploinsufficiency worsens DNA damage, but not defective ciliogenesis, in C9ORF72 patient-derived iPSC-motoneurons.\",\"authors\":\"Serena Santangelo, Sabrina Invernizzi, Marta Nice Sorce, Valeria Casiraghi, Silvia Peverelli, Alberto Brusati, Claudia Colombrita, Nicola Ticozzi, Vincenzo Silani, Patrizia Bossolasco, Antonia Ratti\",\"doi\":\"10.1093/hmg/ddae121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hexanucleotide G4C2 repeat expansion (HRE) in C9ORF72 gene is the major cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to both loss- and gain-of-function pathomechanisms. The wide clinical heterogeneity among C9ORF72 patients suggests potential modifying genetic and epigenetic factors. Notably, C9ORF72 HRE often co-occurs with other rare variants in ALS/FTD-associated genes, such as NEK1, which encodes for a kinase involved in multiple cell pathways, including DNA damage response and ciliogenesis. In this study, we generated induced pluripotent stem cells (iPSCs) and differentiated motoneurons (iPSC-MNs) from an ALS patient carrying both C9ORF72 HRE and a NEK1 loss-of-function mutation to investigate the biological effect of NEK1 haploinsufficiency on C9ORF72 pathology in a condition of oligogenicity. Double mutant C9ORF72/NEK1 cells showed increased pathological C9ORF72 RNA foci in iPSCs and higher DNA damage levels in iPSC-MNs compared to single mutant C9ORF72 cells, but no effect on DNA damage response. When we analysed the primary cilium, we observed a defective ciliogenesis in C9ORF72 iPSC-MNs which was not worsened by NEK1 haploinsufficiency in the double mutant iPSC-MNs. Altogether, our study shows that NEK1 haploinsufficiency influences differently DNA damage and cilia length, potentially acting as a modifier at biological level in an in vitro ALS patient-derived disease model of C9ORF72 pathology.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddae121\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae121","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
C9ORF72 基因中的六核苷酸 G4C2 重复扩增(HRE)是肌萎缩性脊髓侧索硬化症(ALS)和额颞叶痴呆症(FTD)的主要病因,会导致功能缺失和功能增益两种病理机制。C9ORF72 患者之间广泛的临床异质性提示了潜在的遗传和表观遗传修饰因素。值得注意的是,C9ORF72 HRE 常常与 ALS/FTD 相关基因的其他罕见变异同时出现,如 NEK1,该基因编码的激酶参与多种细胞通路,包括 DNA 损伤应答和纤毛生成。在这项研究中,我们从一名同时携带C9ORF72 HRE和NEK1功能缺失突变的ALS患者身上获得了诱导多能干细胞(iPSCs)和分化运动神经元(iPSC-MNs),以研究NEK1单倍体缺失对C9ORF72病理学在寡源性条件下的生物学效应。与单突变 C9ORF72 细胞相比,双突变 C9ORF72/NEK1 细胞在 iPSC 中显示出更多的病理 C9ORF72 RNA 病灶,在 iPSC-MNs 中显示出更高的 DNA 损伤水平,但对 DNA 损伤反应没有影响。当我们分析初级纤毛时,我们观察到 C9ORF72 iPSC-MNs 中的纤毛生成缺陷,而在双突变 iPSC-MNs 中,NEK1 单倍性缺失并没有使这种缺陷恶化。总之,我们的研究表明,NEK1单倍体缺陷会对DNA损伤和纤毛长度产生不同的影响,有可能在C9ORF72病理的体外ALS患者衍生疾病模型中起到生物学水平的调节作用。
NEK1 haploinsufficiency worsens DNA damage, but not defective ciliogenesis, in C9ORF72 patient-derived iPSC-motoneurons.
The hexanucleotide G4C2 repeat expansion (HRE) in C9ORF72 gene is the major cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to both loss- and gain-of-function pathomechanisms. The wide clinical heterogeneity among C9ORF72 patients suggests potential modifying genetic and epigenetic factors. Notably, C9ORF72 HRE often co-occurs with other rare variants in ALS/FTD-associated genes, such as NEK1, which encodes for a kinase involved in multiple cell pathways, including DNA damage response and ciliogenesis. In this study, we generated induced pluripotent stem cells (iPSCs) and differentiated motoneurons (iPSC-MNs) from an ALS patient carrying both C9ORF72 HRE and a NEK1 loss-of-function mutation to investigate the biological effect of NEK1 haploinsufficiency on C9ORF72 pathology in a condition of oligogenicity. Double mutant C9ORF72/NEK1 cells showed increased pathological C9ORF72 RNA foci in iPSCs and higher DNA damage levels in iPSC-MNs compared to single mutant C9ORF72 cells, but no effect on DNA damage response. When we analysed the primary cilium, we observed a defective ciliogenesis in C9ORF72 iPSC-MNs which was not worsened by NEK1 haploinsufficiency in the double mutant iPSC-MNs. Altogether, our study shows that NEK1 haploinsufficiency influences differently DNA damage and cilia length, potentially acting as a modifier at biological level in an in vitro ALS patient-derived disease model of C9ORF72 pathology.