模拟除草剂漂移对北部大平原本地植物种子发芽、幼苗出土和幼苗生长的影响。

IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Gabrielle A Bolwerk, Gregory A Cooper, A Joshua Leffler, Lora B Perkins
{"title":"模拟除草剂漂移对北部大平原本地植物种子发芽、幼苗出土和幼苗生长的影响。","authors":"Gabrielle A Bolwerk, Gregory A Cooper, A Joshua Leffler, Lora B Perkins","doi":"10.1002/etc.5982","DOIUrl":null,"url":null,"abstract":"<p><p>Small concentrations of herbicide, such as those found in drift, can affect nontarget plants at different life-history stages including seed germination and seedling emergence as well as seedling growth. Fragmented landscapes, such as those in the northern Great Plains, lead to increased proximity of ecological restoration sites to agricultural lands using herbicides. Germination, emergence, and growth are crucial life-history stages leading to ecological restoration success, but these stages are sensitive to impacts from external factors such as herbicide exposure. A lab germination experiment and a greenhouse emergence experiment were performed to examine the effect of herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], atrazine, and trifluralin) on species used in ecological restorations in the northern Great Plains. Seed germination, seedling emergence, and seedling growth of many study species decreased with exposure to herbicides at different concentrations representative of herbicide drift. At concentrations as low as 0.1% recommended application rate 2,4-D elicited broad effects on final seed germination percentage and germination rate. Atrazine affected seedling emergence and growth for a number of study species at concentrations as low as 10% recommended application rate. Trifluralin affected germination, emergence, and growth of the fewest number of study species. The information gained from these experiments can be used to inform restoration practitioners of best practices and recommended species to use when implementing ecological restoration adjacent to agricultural lands. Environ Toxicol Chem 2024;00:1-11. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulated Herbicide Drift Effects on Seed Germination, Seedling Emergence, and Seedling Growth of Native Plants of the Northern Great Plains.\",\"authors\":\"Gabrielle A Bolwerk, Gregory A Cooper, A Joshua Leffler, Lora B Perkins\",\"doi\":\"10.1002/etc.5982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small concentrations of herbicide, such as those found in drift, can affect nontarget plants at different life-history stages including seed germination and seedling emergence as well as seedling growth. Fragmented landscapes, such as those in the northern Great Plains, lead to increased proximity of ecological restoration sites to agricultural lands using herbicides. Germination, emergence, and growth are crucial life-history stages leading to ecological restoration success, but these stages are sensitive to impacts from external factors such as herbicide exposure. A lab germination experiment and a greenhouse emergence experiment were performed to examine the effect of herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], atrazine, and trifluralin) on species used in ecological restorations in the northern Great Plains. Seed germination, seedling emergence, and seedling growth of many study species decreased with exposure to herbicides at different concentrations representative of herbicide drift. At concentrations as low as 0.1% recommended application rate 2,4-D elicited broad effects on final seed germination percentage and germination rate. Atrazine affected seedling emergence and growth for a number of study species at concentrations as low as 10% recommended application rate. Trifluralin affected germination, emergence, and growth of the fewest number of study species. The information gained from these experiments can be used to inform restoration practitioners of best practices and recommended species to use when implementing ecological restoration adjacent to agricultural lands. Environ Toxicol Chem 2024;00:1-11. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.</p>\",\"PeriodicalId\":11793,\"journal\":{\"name\":\"Environmental Toxicology and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology and Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/etc.5982\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/etc.5982","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

小浓度的除草剂(如漂移中的除草剂)会影响不同生命史阶段的非目标植物,包括种子发芽、幼苗萌发和幼苗生长。大平原北部等地的地形破碎,导致生态恢复地点越来越靠近使用除草剂的农田。发芽、出苗和生长是生态恢复取得成功的关键生命史阶段,但这些阶段对除草剂暴露等外部因素的影响非常敏感。为了研究除草剂(2,4-二氯苯氧乙酸 [2,4-D]、阿特拉津和氟乐灵)对大平原北部生态恢复中使用的物种的影响,我们进行了实验室发芽实验和温室出苗实验。许多研究物种的种子发芽率、幼苗出土率和幼苗生长率都随着除草剂漂移的不同浓度而下降。建议施用浓度低至 0.1% 的 2,4-D 会对最终种子发芽率和发芽率产生广泛影响。阿特拉津的建议施用浓度低至 10%,就会影响一些研究物种的出苗和生长。影响发芽、出苗和生长的研究物种数量最少。从这些实验中获得的信息可用于指导恢复工作者在农田附近实施生态恢复时的最佳实践和推荐使用的物种。环境毒物化学 2024;00:1-11。© 2024 作者。环境毒理学与化学》由 Wiley Periodicals LLC 代表 SETAC 出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulated Herbicide Drift Effects on Seed Germination, Seedling Emergence, and Seedling Growth of Native Plants of the Northern Great Plains.

Small concentrations of herbicide, such as those found in drift, can affect nontarget plants at different life-history stages including seed germination and seedling emergence as well as seedling growth. Fragmented landscapes, such as those in the northern Great Plains, lead to increased proximity of ecological restoration sites to agricultural lands using herbicides. Germination, emergence, and growth are crucial life-history stages leading to ecological restoration success, but these stages are sensitive to impacts from external factors such as herbicide exposure. A lab germination experiment and a greenhouse emergence experiment were performed to examine the effect of herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], atrazine, and trifluralin) on species used in ecological restorations in the northern Great Plains. Seed germination, seedling emergence, and seedling growth of many study species decreased with exposure to herbicides at different concentrations representative of herbicide drift. At concentrations as low as 0.1% recommended application rate 2,4-D elicited broad effects on final seed germination percentage and germination rate. Atrazine affected seedling emergence and growth for a number of study species at concentrations as low as 10% recommended application rate. Trifluralin affected germination, emergence, and growth of the fewest number of study species. The information gained from these experiments can be used to inform restoration practitioners of best practices and recommended species to use when implementing ecological restoration adjacent to agricultural lands. Environ Toxicol Chem 2024;00:1-11. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
9.80%
发文量
265
审稿时长
3.4 months
期刊介绍: The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...] Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信