Ishfaq Ahmad Sheikh, Mohd Amin Beg, Muzafar A Macha
{"title":"拟除虫菊酯与生殖功能:从分子模拟的角度看内分泌干扰问题。","authors":"Ishfaq Ahmad Sheikh, Mohd Amin Beg, Muzafar A Macha","doi":"10.1007/s10646-024-02801-8","DOIUrl":null,"url":null,"abstract":"<p><p>Pyrethroids are widely used insecticides with huge applications for household as well as agricultural purposes and contribute to improved product quality and higher yields. In recent decades, the demand for pyrethroids has increased significantly due to advantages such as broad-spectrum efficacy, high insecticidal potential, and lower pest resistance. However, several studies have suggested that human exposure to pyrethroids leads to reproductive problems. Sex hormone-binding globulin (SHBG) is an important hormone transport protein regulating the availability of steroids at their target site. The aim of our study was to investigate the structural interactions of commonly used pyrethroids, cypermethrin and deltamethrin, with ligand binding pocket of SHBG. Cypermethrin and deltamethrin were docked into the steroid binding pocket of SHBG using Schrodinger's induced fit docking (IFD) followed by molecular dynamics (MD) simulation studies. The resultant SHBG-pyrethroid complexes from IFD experiments were subjected to structural analysis including the molecular interactions followed by binding energy estimation. The analysis revealed that both the ligands were tightly bound in the SHBG pocket with high percentage of commonality among the SHBG residues between the indicated pyrethroid ligands and the SHBG native ligand, dihydrotestosterone (DHT). The estimated binding energy values for cypermethrin were less but close to the values calculated for the SHBG native ligand, DHT. However, the estimated binding energy values for deltamethrin were higher compared to the values calculated for SHBG native ligand, DHT. Furthermore, the MD simulation results also revealed the higher stability of SHBG-deltamethrin than SHBG-cypermethrin complex. To sum up, the results suggested that deltamethrin has a greater capability than cypermethrin to prevent sex steroid hormone from binding to SHBG, even though both pyrethroids have this ability. Consequently, this might hamper the circulatory transport of sex steroid hormones and their availability at the target site, subsequently interfering with reproductive function.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"1086-1095"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrethroids and reproductive function: some endocrine disrupting perspectives from molecular simulations.\",\"authors\":\"Ishfaq Ahmad Sheikh, Mohd Amin Beg, Muzafar A Macha\",\"doi\":\"10.1007/s10646-024-02801-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyrethroids are widely used insecticides with huge applications for household as well as agricultural purposes and contribute to improved product quality and higher yields. In recent decades, the demand for pyrethroids has increased significantly due to advantages such as broad-spectrum efficacy, high insecticidal potential, and lower pest resistance. However, several studies have suggested that human exposure to pyrethroids leads to reproductive problems. Sex hormone-binding globulin (SHBG) is an important hormone transport protein regulating the availability of steroids at their target site. The aim of our study was to investigate the structural interactions of commonly used pyrethroids, cypermethrin and deltamethrin, with ligand binding pocket of SHBG. Cypermethrin and deltamethrin were docked into the steroid binding pocket of SHBG using Schrodinger's induced fit docking (IFD) followed by molecular dynamics (MD) simulation studies. The resultant SHBG-pyrethroid complexes from IFD experiments were subjected to structural analysis including the molecular interactions followed by binding energy estimation. The analysis revealed that both the ligands were tightly bound in the SHBG pocket with high percentage of commonality among the SHBG residues between the indicated pyrethroid ligands and the SHBG native ligand, dihydrotestosterone (DHT). The estimated binding energy values for cypermethrin were less but close to the values calculated for the SHBG native ligand, DHT. However, the estimated binding energy values for deltamethrin were higher compared to the values calculated for SHBG native ligand, DHT. Furthermore, the MD simulation results also revealed the higher stability of SHBG-deltamethrin than SHBG-cypermethrin complex. To sum up, the results suggested that deltamethrin has a greater capability than cypermethrin to prevent sex steroid hormone from binding to SHBG, even though both pyrethroids have this ability. Consequently, this might hamper the circulatory transport of sex steroid hormones and their availability at the target site, subsequently interfering with reproductive function.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\" \",\"pages\":\"1086-1095\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-024-02801-8\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02801-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Pyrethroids and reproductive function: some endocrine disrupting perspectives from molecular simulations.
Pyrethroids are widely used insecticides with huge applications for household as well as agricultural purposes and contribute to improved product quality and higher yields. In recent decades, the demand for pyrethroids has increased significantly due to advantages such as broad-spectrum efficacy, high insecticidal potential, and lower pest resistance. However, several studies have suggested that human exposure to pyrethroids leads to reproductive problems. Sex hormone-binding globulin (SHBG) is an important hormone transport protein regulating the availability of steroids at their target site. The aim of our study was to investigate the structural interactions of commonly used pyrethroids, cypermethrin and deltamethrin, with ligand binding pocket of SHBG. Cypermethrin and deltamethrin were docked into the steroid binding pocket of SHBG using Schrodinger's induced fit docking (IFD) followed by molecular dynamics (MD) simulation studies. The resultant SHBG-pyrethroid complexes from IFD experiments were subjected to structural analysis including the molecular interactions followed by binding energy estimation. The analysis revealed that both the ligands were tightly bound in the SHBG pocket with high percentage of commonality among the SHBG residues between the indicated pyrethroid ligands and the SHBG native ligand, dihydrotestosterone (DHT). The estimated binding energy values for cypermethrin were less but close to the values calculated for the SHBG native ligand, DHT. However, the estimated binding energy values for deltamethrin were higher compared to the values calculated for SHBG native ligand, DHT. Furthermore, the MD simulation results also revealed the higher stability of SHBG-deltamethrin than SHBG-cypermethrin complex. To sum up, the results suggested that deltamethrin has a greater capability than cypermethrin to prevent sex steroid hormone from binding to SHBG, even though both pyrethroids have this ability. Consequently, this might hamper the circulatory transport of sex steroid hormones and their availability at the target site, subsequently interfering with reproductive function.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.