胶原结合型骨形态发生蛋白-2,设计用于骨组织工程。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-09-28 Epub Date: 2024-08-30 DOI:10.4012/dmj.2024-138
Karina Erda Saninggar, Fumika Abe, Ayana Nakano, Koichi Kato
{"title":"胶原结合型骨形态发生蛋白-2,设计用于骨组织工程。","authors":"Karina Erda Saninggar, Fumika Abe, Ayana Nakano, Koichi Kato","doi":"10.4012/dmj.2024-138","DOIUrl":null,"url":null,"abstract":"<p><p>Bone tissue engineering using biodegradable porous scaffolds is a promising approach for restoring oral and maxillofacial bone defects. Recently, attempts have been made to incorporate proteins such as growth factors to create bioactive scaffolds that can engage cells to promote tissue formation. Collagen-based scaffolds containing bone morphogenetic protein-2 (BMP2) have been studied for bone formation. However, controlling the initial burst of BMP2 remains difficult. Here we designed a functional chimeric protein composed of BMP2 and a collagen-binding domain (CBD), specifically the A3 domain of von Willebrand factor, to sustain BMP2 release from collagen-based scaffolds. Based on the results of computer-based structural prediction, we prepared a chimeric protein consisting of CBD and BMP2 in this order with a peptide tag for affinity purification. The chimeric protein had a collagen-binding capacity and enhanced osteogenic differentiation of human mesenchymal stem cells. These results are consistent with insights from in silico structural prediction.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collagen-binding bone morphogenetic protein-2 designed for use in bone tissue engineering.\",\"authors\":\"Karina Erda Saninggar, Fumika Abe, Ayana Nakano, Koichi Kato\",\"doi\":\"10.4012/dmj.2024-138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone tissue engineering using biodegradable porous scaffolds is a promising approach for restoring oral and maxillofacial bone defects. Recently, attempts have been made to incorporate proteins such as growth factors to create bioactive scaffolds that can engage cells to promote tissue formation. Collagen-based scaffolds containing bone morphogenetic protein-2 (BMP2) have been studied for bone formation. However, controlling the initial burst of BMP2 remains difficult. Here we designed a functional chimeric protein composed of BMP2 and a collagen-binding domain (CBD), specifically the A3 domain of von Willebrand factor, to sustain BMP2 release from collagen-based scaffolds. Based on the results of computer-based structural prediction, we prepared a chimeric protein consisting of CBD and BMP2 in this order with a peptide tag for affinity purification. The chimeric protein had a collagen-binding capacity and enhanced osteogenic differentiation of human mesenchymal stem cells. These results are consistent with insights from in silico structural prediction.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4012/dmj.2024-138\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2024-138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用生物可降解多孔支架进行骨组织工程是一种很有前景的修复口腔和颌面骨缺损的方法。最近,人们开始尝试加入生长因子等蛋白质来制造生物活性支架,使其能够吸引细胞促进组织形成。含有骨形态发生蛋白-2(BMP2)的胶原基支架已被研究用于骨形成。然而,控制 BMP2 的初始迸发仍然很困难。在这里,我们设计了一种由 BMP2 和胶原结合结构域(CBD)(特别是 von Willebrand 因子的 A3 结构域)组成的功能性嵌合蛋白,以维持 BMP2 从胶原基支架中的释放。根据基于计算机的结构预测结果,我们制备了一种由 CBD 和 BMP2 按此顺序组成的嵌合蛋白,并带有用于亲和纯化的肽标签。这种嵌合蛋白具有胶原结合能力,并能增强人间质干细胞的成骨分化。这些结果与硅学结构预测的见解一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collagen-binding bone morphogenetic protein-2 designed for use in bone tissue engineering.

Bone tissue engineering using biodegradable porous scaffolds is a promising approach for restoring oral and maxillofacial bone defects. Recently, attempts have been made to incorporate proteins such as growth factors to create bioactive scaffolds that can engage cells to promote tissue formation. Collagen-based scaffolds containing bone morphogenetic protein-2 (BMP2) have been studied for bone formation. However, controlling the initial burst of BMP2 remains difficult. Here we designed a functional chimeric protein composed of BMP2 and a collagen-binding domain (CBD), specifically the A3 domain of von Willebrand factor, to sustain BMP2 release from collagen-based scaffolds. Based on the results of computer-based structural prediction, we prepared a chimeric protein consisting of CBD and BMP2 in this order with a peptide tag for affinity purification. The chimeric protein had a collagen-binding capacity and enhanced osteogenic differentiation of human mesenchymal stem cells. These results are consistent with insights from in silico structural prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信