提高骶髂关节炎的诊断准确性:应用于计算机断层扫描成像的机器学习方法。

IF 1 4区 医学 Q3 MEDICINE, GENERAL & INTERNAL
Qingsong Fu, Xueru Yuan, Xinyou Han, Weibin Wang, Jiakai Zhang, Xinhua Yuan
{"title":"提高骶髂关节炎的诊断准确性:应用于计算机断层扫描成像的机器学习方法。","authors":"Qingsong Fu, Xueru Yuan, Xinyou Han, Weibin Wang, Jiakai Zhang, Xinhua Yuan","doi":"10.12968/hmed.2024.0228","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aims/Background</b> Sacroiliitis is a challenging condition to diagnose accurately due to the subtle nature of its presentation in imaging studies. This study aims to improve the diagnostic accuracy of sacroiliitis by applying advanced machine learning techniques to computed tomography (CT) images. <b>Methods</b> We employed five convolutional neural network (CNN) models-Visual Geometry Group 16-layer Network (VGG16), ResNet101, DenseNet, Inception-v4, and ResNeXt-50-to analyze a dataset of 830 CT images, including both sacroiliitis and non-sacroiliitis cases. Each model's performance was evaluated using metrics such as accuracy, precision, recall, F1 score, Receiver Operating Characteristic (ROC), and Area Under the Curve (AUC). The interpretability of the models' decisions was enhanced using Gradient-weighted Class Activation Mapping (Grad-CAM) visualization. <b>Results</b> The ResNeXt-50 and Inception-v4 models demonstrated superior performance, achieving the highest accuracy and F1 scores among the tested models. Grad-CAM visualizations offered insights into the decision-making processes, highlighting the models' focus on relevant anatomical features critical for accurate diagnosis. <b>Conclusion</b> The use of CNN models, particularly ResNeXt-50 and Inception-v4, significantly improves the diagnosis of sacroiliitis from CT images. These models not only provide high diagnostic accuracy but also offer transparency in their decision-making processes, aiding clinicians in understanding and trusting Artificial Intelligence (AI)-driven diagnostics.</p>","PeriodicalId":9256,"journal":{"name":"British journal of hospital medicine","volume":"85 8","pages":"1-13"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Diagnostic Accuracy of Sacroiliitis: A Machine Learning Approach Applied to Computed Tomography Imaging.\",\"authors\":\"Qingsong Fu, Xueru Yuan, Xinyou Han, Weibin Wang, Jiakai Zhang, Xinhua Yuan\",\"doi\":\"10.12968/hmed.2024.0228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aims/Background</b> Sacroiliitis is a challenging condition to diagnose accurately due to the subtle nature of its presentation in imaging studies. This study aims to improve the diagnostic accuracy of sacroiliitis by applying advanced machine learning techniques to computed tomography (CT) images. <b>Methods</b> We employed five convolutional neural network (CNN) models-Visual Geometry Group 16-layer Network (VGG16), ResNet101, DenseNet, Inception-v4, and ResNeXt-50-to analyze a dataset of 830 CT images, including both sacroiliitis and non-sacroiliitis cases. Each model's performance was evaluated using metrics such as accuracy, precision, recall, F1 score, Receiver Operating Characteristic (ROC), and Area Under the Curve (AUC). The interpretability of the models' decisions was enhanced using Gradient-weighted Class Activation Mapping (Grad-CAM) visualization. <b>Results</b> The ResNeXt-50 and Inception-v4 models demonstrated superior performance, achieving the highest accuracy and F1 scores among the tested models. Grad-CAM visualizations offered insights into the decision-making processes, highlighting the models' focus on relevant anatomical features critical for accurate diagnosis. <b>Conclusion</b> The use of CNN models, particularly ResNeXt-50 and Inception-v4, significantly improves the diagnosis of sacroiliitis from CT images. These models not only provide high diagnostic accuracy but also offer transparency in their decision-making processes, aiding clinicians in understanding and trusting Artificial Intelligence (AI)-driven diagnostics.</p>\",\"PeriodicalId\":9256,\"journal\":{\"name\":\"British journal of hospital medicine\",\"volume\":\"85 8\",\"pages\":\"1-13\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British journal of hospital medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12968/hmed.2024.0228\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of hospital medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12968/hmed.2024.0228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

目的/背景 由于骶髂关节炎在影像学检查中的表现非常微妙,因此准确诊断骶髂关节炎具有挑战性。本研究旨在通过对计算机断层扫描(CT)图像应用先进的机器学习技术,提高骶髂关节炎的诊断准确性。方法 我们采用了五种卷积神经网络 (CNN) 模型--视觉几何组 16 层网络 (VGG16)、ResNet101、DenseNet、Inception-v4 和 ResNeXt-50 来分析 830 张 CT 图像数据集,其中包括骶髂关节炎和非骶髂关节炎病例。使用准确度、精确度、召回率、F1 分数、接收器工作特征(ROC)和曲线下面积(AUC)等指标对每个模型的性能进行了评估。利用梯度加权类活化映射(Grad-CAM)可视化技术提高了模型决策的可解释性。结果 ResNeXt-50 和 Inception-v4 模型表现出卓越的性能,在所有测试模型中获得了最高的准确率和 F1 分数。Grad-CAM 可视化可深入了解决策过程,突出显示了模型对准确诊断至关重要的相关解剖特征的关注。结论 使用 CNN 模型,尤其是 ResNeXt-50 和 Inception-v4,可显著提高通过 CT 图像诊断骶髂关节炎的能力。这些模型不仅诊断准确率高,而且决策过程透明,有助于临床医生理解和信任人工智能(AI)驱动的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Diagnostic Accuracy of Sacroiliitis: A Machine Learning Approach Applied to Computed Tomography Imaging.

Aims/Background Sacroiliitis is a challenging condition to diagnose accurately due to the subtle nature of its presentation in imaging studies. This study aims to improve the diagnostic accuracy of sacroiliitis by applying advanced machine learning techniques to computed tomography (CT) images. Methods We employed five convolutional neural network (CNN) models-Visual Geometry Group 16-layer Network (VGG16), ResNet101, DenseNet, Inception-v4, and ResNeXt-50-to analyze a dataset of 830 CT images, including both sacroiliitis and non-sacroiliitis cases. Each model's performance was evaluated using metrics such as accuracy, precision, recall, F1 score, Receiver Operating Characteristic (ROC), and Area Under the Curve (AUC). The interpretability of the models' decisions was enhanced using Gradient-weighted Class Activation Mapping (Grad-CAM) visualization. Results The ResNeXt-50 and Inception-v4 models demonstrated superior performance, achieving the highest accuracy and F1 scores among the tested models. Grad-CAM visualizations offered insights into the decision-making processes, highlighting the models' focus on relevant anatomical features critical for accurate diagnosis. Conclusion The use of CNN models, particularly ResNeXt-50 and Inception-v4, significantly improves the diagnosis of sacroiliitis from CT images. These models not only provide high diagnostic accuracy but also offer transparency in their decision-making processes, aiding clinicians in understanding and trusting Artificial Intelligence (AI)-driven diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
British journal of hospital medicine
British journal of hospital medicine 医学-医学:内科
CiteScore
1.50
自引率
0.00%
发文量
176
审稿时长
4-8 weeks
期刊介绍: British Journal of Hospital Medicine was established in 1966, and is still true to its origins: a monthly, peer-reviewed, multidisciplinary review journal for hospital doctors and doctors in training. The journal publishes an authoritative mix of clinical reviews, education and training updates, quality improvement projects and case reports, and book reviews from recognized leaders in the profession. The Core Training for Doctors section provides clinical information in an easily accessible format for doctors in training. British Journal of Hospital Medicine is an invaluable resource for hospital doctors at all stages of their career. The journal is indexed on Medline, CINAHL, the Sociedad Iberoamericana de Información Científica and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信