Yukiko Iwasaki , Corentin Bernou , Barbara Gorda , Sophie Colomb , Gowrishankar Ganesh , Raphael Gaudin
{"title":"死后成人大脑外植体的有机培养显示出突触可塑性。","authors":"Yukiko Iwasaki , Corentin Bernou , Barbara Gorda , Sophie Colomb , Gowrishankar Ganesh , Raphael Gaudin","doi":"10.1016/j.brs.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Synaptic plasticity is an essential process encoding fine-tuned brain functions, but models to study this process in adult human systems are lacking.</p></div><div><h3>Objective</h3><p>We aim to test whether <em>ex vivo</em> organotypic culture of <em>post-mortem</em> adult brain explants (OPABs) retain synaptic plasticity.</p></div><div><h3>Methods</h3><p>OPABs were seeded on 3D microelectrode arrays to measure local field potential (LFP). Paired stimulation of distant electrodes was performed over three days to investigate our capacity to modulate specific neuronal connections.</p></div><div><h3>Results</h3><p>Long-term potentiation (LTP) or depression (LTD) did not occur within a single day. In contrast, after two and three days of training, OPABs showed a significant modulation of the paired electrodes’ response compared to the non-paired electrodes from the same array. This response was alleviated upon treatment with dopamine.</p></div><div><h3>Conclusion</h3><p>Our work highlights that adult human brain explants retain synaptic plasticity, offering novel approaches to neural circuitry in animal-free models.</p></div>","PeriodicalId":9206,"journal":{"name":"Brain Stimulation","volume":"17 5","pages":"Pages 1018-1023"},"PeriodicalIF":7.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1935861X24001517/pdfft?md5=78b4072b693d4ee334322844bbe9ae18&pid=1-s2.0-S1935861X24001517-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Organotypic culture of post-mortem adult human brain explants exhibits synaptic plasticity\",\"authors\":\"Yukiko Iwasaki , Corentin Bernou , Barbara Gorda , Sophie Colomb , Gowrishankar Ganesh , Raphael Gaudin\",\"doi\":\"10.1016/j.brs.2024.08.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Synaptic plasticity is an essential process encoding fine-tuned brain functions, but models to study this process in adult human systems are lacking.</p></div><div><h3>Objective</h3><p>We aim to test whether <em>ex vivo</em> organotypic culture of <em>post-mortem</em> adult brain explants (OPABs) retain synaptic plasticity.</p></div><div><h3>Methods</h3><p>OPABs were seeded on 3D microelectrode arrays to measure local field potential (LFP). Paired stimulation of distant electrodes was performed over three days to investigate our capacity to modulate specific neuronal connections.</p></div><div><h3>Results</h3><p>Long-term potentiation (LTP) or depression (LTD) did not occur within a single day. In contrast, after two and three days of training, OPABs showed a significant modulation of the paired electrodes’ response compared to the non-paired electrodes from the same array. This response was alleviated upon treatment with dopamine.</p></div><div><h3>Conclusion</h3><p>Our work highlights that adult human brain explants retain synaptic plasticity, offering novel approaches to neural circuitry in animal-free models.</p></div>\",\"PeriodicalId\":9206,\"journal\":{\"name\":\"Brain Stimulation\",\"volume\":\"17 5\",\"pages\":\"Pages 1018-1023\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1935861X24001517/pdfft?md5=78b4072b693d4ee334322844bbe9ae18&pid=1-s2.0-S1935861X24001517-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Stimulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1935861X24001517\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Stimulation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1935861X24001517","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Organotypic culture of post-mortem adult human brain explants exhibits synaptic plasticity
Background
Synaptic plasticity is an essential process encoding fine-tuned brain functions, but models to study this process in adult human systems are lacking.
Objective
We aim to test whether ex vivo organotypic culture of post-mortem adult brain explants (OPABs) retain synaptic plasticity.
Methods
OPABs were seeded on 3D microelectrode arrays to measure local field potential (LFP). Paired stimulation of distant electrodes was performed over three days to investigate our capacity to modulate specific neuronal connections.
Results
Long-term potentiation (LTP) or depression (LTD) did not occur within a single day. In contrast, after two and three days of training, OPABs showed a significant modulation of the paired electrodes’ response compared to the non-paired electrodes from the same array. This response was alleviated upon treatment with dopamine.
Conclusion
Our work highlights that adult human brain explants retain synaptic plasticity, offering novel approaches to neural circuitry in animal-free models.
期刊介绍:
Brain Stimulation publishes on the entire field of brain stimulation, including noninvasive and invasive techniques and technologies that alter brain function through the use of electrical, magnetic, radiowave, or focally targeted pharmacologic stimulation.
Brain Stimulation aims to be the premier journal for publication of original research in the field of neuromodulation. The journal includes: a) Original articles; b) Short Communications; c) Invited and original reviews; d) Technology and methodological perspectives (reviews of new devices, description of new methods, etc.); and e) Letters to the Editor. Special issues of the journal will be considered based on scientific merit.