Chetana Tamadaddi, Juseok Choi, Masoud Ghasemi, Seong H Kim, Enrique D Gomez, Esther W Gomez, Charles T Anderson
{"title":"NST3 可诱导拟南芥异位转分化,形成具有不同模式和组成的次生壁。","authors":"Chetana Tamadaddi, Juseok Choi, Masoud Ghasemi, Seong H Kim, Enrique D Gomez, Esther W Gomez, Charles T Anderson","doi":"10.1093/aob/mcae153","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>The master transcription factor NAC SECONDARY WALL THICKENING PROMOTING FACTOR3 (NST3), also known as SND1, plays a pivotal role in regulating secondary cell wall (SCW) development in interfascicular and xylary fibers in Arabidopsis thaliana. Despite progress in understanding SCW assembly in xylem vessel-like cells, the mechanisms behind its assembly across different cell types remain unclear. Overexpressing NST3 or its homolog NST1 leads to reduced fertility, posing challenges for studying their impact on secondary wall formation. This study aimed at developing a tightly regulated dexamethasone (DEX)-inducible expression system for NST3 and NST1 to elucidate the structure and assembly of diverse SCWs.</p><p><strong>Methods: </strong>Using the DEX-inducible system, we characterized ectopically formed SCWs for their diverse patterns, mesoscale organization, cellulose microfibril orientation, and molecular composition using spinning disk confocal microscopy, field emission scanning electron microscopy (FESEM), vibrational sum-frequency generation (SFG) spectroscopy and, histochemical staining and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively.</p><p><strong>Key results: </strong>Upon DEX treatment, NST3 and NST1 transgenic hypocotyls underwent time-dependent transdifferentiation, progressing from protoxylem-like to metaxylem-like cells. NST3-induced plants exhibited normal growth but had rough secondary wall surfaces with delaminating S2 and S3 layers. Mesoscale examination of induced SCWs in epidermal cells revealed that macrofibril thickness and orientation were comparable to xylem vessels, while wall thickness resembled that of interfascicular fibers. Additionally, induced epidermal cells formed SCWs with altered cellulose and lignin contents.</p><p><strong>Conclusions: </strong>These findings suggest NST3 and/or NST1 induce SCWs with shared characteristics of both xylem and fiber-like cells forming loosely arranged cell wall layers and cellulose organized at multiple angles relative to the cell growth axis and with varied cellulose and lignin abundance. This inducible system opens avenues to explore ectopic SCWs for bioenergy and bioproducts, offering valuable insights into SCW patterning across diverse cell types and developmental stages.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NST3 induces ectopic transdifferentiation, forming secondary walls with diverse patterns and composition in Arabidopsis thaliana.\",\"authors\":\"Chetana Tamadaddi, Juseok Choi, Masoud Ghasemi, Seong H Kim, Enrique D Gomez, Esther W Gomez, Charles T Anderson\",\"doi\":\"10.1093/aob/mcae153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>The master transcription factor NAC SECONDARY WALL THICKENING PROMOTING FACTOR3 (NST3), also known as SND1, plays a pivotal role in regulating secondary cell wall (SCW) development in interfascicular and xylary fibers in Arabidopsis thaliana. Despite progress in understanding SCW assembly in xylem vessel-like cells, the mechanisms behind its assembly across different cell types remain unclear. Overexpressing NST3 or its homolog NST1 leads to reduced fertility, posing challenges for studying their impact on secondary wall formation. This study aimed at developing a tightly regulated dexamethasone (DEX)-inducible expression system for NST3 and NST1 to elucidate the structure and assembly of diverse SCWs.</p><p><strong>Methods: </strong>Using the DEX-inducible system, we characterized ectopically formed SCWs for their diverse patterns, mesoscale organization, cellulose microfibril orientation, and molecular composition using spinning disk confocal microscopy, field emission scanning electron microscopy (FESEM), vibrational sum-frequency generation (SFG) spectroscopy and, histochemical staining and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively.</p><p><strong>Key results: </strong>Upon DEX treatment, NST3 and NST1 transgenic hypocotyls underwent time-dependent transdifferentiation, progressing from protoxylem-like to metaxylem-like cells. NST3-induced plants exhibited normal growth but had rough secondary wall surfaces with delaminating S2 and S3 layers. Mesoscale examination of induced SCWs in epidermal cells revealed that macrofibril thickness and orientation were comparable to xylem vessels, while wall thickness resembled that of interfascicular fibers. Additionally, induced epidermal cells formed SCWs with altered cellulose and lignin contents.</p><p><strong>Conclusions: </strong>These findings suggest NST3 and/or NST1 induce SCWs with shared characteristics of both xylem and fiber-like cells forming loosely arranged cell wall layers and cellulose organized at multiple angles relative to the cell growth axis and with varied cellulose and lignin abundance. This inducible system opens avenues to explore ectopic SCWs for bioenergy and bioproducts, offering valuable insights into SCW patterning across diverse cell types and developmental stages.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcae153\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae153","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
NST3 induces ectopic transdifferentiation, forming secondary walls with diverse patterns and composition in Arabidopsis thaliana.
Background and aims: The master transcription factor NAC SECONDARY WALL THICKENING PROMOTING FACTOR3 (NST3), also known as SND1, plays a pivotal role in regulating secondary cell wall (SCW) development in interfascicular and xylary fibers in Arabidopsis thaliana. Despite progress in understanding SCW assembly in xylem vessel-like cells, the mechanisms behind its assembly across different cell types remain unclear. Overexpressing NST3 or its homolog NST1 leads to reduced fertility, posing challenges for studying their impact on secondary wall formation. This study aimed at developing a tightly regulated dexamethasone (DEX)-inducible expression system for NST3 and NST1 to elucidate the structure and assembly of diverse SCWs.
Methods: Using the DEX-inducible system, we characterized ectopically formed SCWs for their diverse patterns, mesoscale organization, cellulose microfibril orientation, and molecular composition using spinning disk confocal microscopy, field emission scanning electron microscopy (FESEM), vibrational sum-frequency generation (SFG) spectroscopy and, histochemical staining and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively.
Key results: Upon DEX treatment, NST3 and NST1 transgenic hypocotyls underwent time-dependent transdifferentiation, progressing from protoxylem-like to metaxylem-like cells. NST3-induced plants exhibited normal growth but had rough secondary wall surfaces with delaminating S2 and S3 layers. Mesoscale examination of induced SCWs in epidermal cells revealed that macrofibril thickness and orientation were comparable to xylem vessels, while wall thickness resembled that of interfascicular fibers. Additionally, induced epidermal cells formed SCWs with altered cellulose and lignin contents.
Conclusions: These findings suggest NST3 and/or NST1 induce SCWs with shared characteristics of both xylem and fiber-like cells forming loosely arranged cell wall layers and cellulose organized at multiple angles relative to the cell growth axis and with varied cellulose and lignin abundance. This inducible system opens avenues to explore ectopic SCWs for bioenergy and bioproducts, offering valuable insights into SCW patterning across diverse cell types and developmental stages.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.