基于erc2基因内含子插入变异的新基因性别标记的开发与应用

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Pingrui Xu, Yongshuang Xiao, Zhizhong Xiao, Jun Li
{"title":"基于erc2基因内含子插入变异的新基因性别标记的开发与应用","authors":"Pingrui Xu,&nbsp;Yongshuang Xiao,&nbsp;Zhizhong Xiao,&nbsp;Jun Li","doi":"10.1007/s10126-024-10363-3","DOIUrl":null,"url":null,"abstract":"<div><p>Spotted knifejaw (<i>Oplegnathus punctatus</i>), one of the most valuable mariculture species, grows with significant sexual dimorphism, with males growing significantly faster than females. <i>O. punctatus</i> not only has excellent growth characteristics and high food value, but also shows high economic value in aquaculture, which has become a hotspot in the field of aquaculture. The current insufficiency of sex marker identification in <i>O. punctatus</i> restricts the process of its unisexual breeding. Rapid identification of sex will help to study the mechanisms of sex determination and accelerate the development of sex-controlled breeding. With the completion of the sequencing of the male and female genomes of <i>O. punctatus</i>, the efficient and precise development of genetic sex markers has been made possible. In this study, we used genome-wide information combined with molecular biology techniques from marker sequences to further establish a rapid method for DNA insertion variant detection in the intron of <i>O. punctatus erc2</i> gene, which can be used to rapidly, accurately, and efficiently identify whether DNA insertion occurs in the intron of <i>O. punctatus erc2</i> gene to be detected, and to identify the sex of <i>O. punctatus</i> to be detected. It could also be distinguished by agarose gel electrophoresis, which would shorten the time for accurate identification and improves the detection efficiency. Homozygous comparison of male and female individuals showed that the length of the DNA fragment of the <i>erc2</i> gene was 239 bp on chromosome X<sub>1</sub> and 1173 bp on chromosome Y. It can therefore be inferred that a 934 bp insertion fragment exists on the Y chromosome. The PCR amplification results showed that two DNA fragments of 1173 bp and 239 bp could be amplified in male <i>O. punctatus</i>, and the 1173 bp fragment was a marker fragment specific to the variant intron <i>erc2</i> gene, while only a single DNA fragment of 239 bp was amplified in female <i>O. punctatus</i>. It has important significance and application value in the study of neurotransmitter transmission and environmental adaptability of female and male fish based on <i>erc2</i> gene, as well as the identification of male and female sex, the preparation of high male fry, and family breeding.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploitation and Application of a New Genetic Sex Marker Based on Intron Insertion Variation of erc2 Gene in Oplegnathus punctatus\",\"authors\":\"Pingrui Xu,&nbsp;Yongshuang Xiao,&nbsp;Zhizhong Xiao,&nbsp;Jun Li\",\"doi\":\"10.1007/s10126-024-10363-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spotted knifejaw (<i>Oplegnathus punctatus</i>), one of the most valuable mariculture species, grows with significant sexual dimorphism, with males growing significantly faster than females. <i>O. punctatus</i> not only has excellent growth characteristics and high food value, but also shows high economic value in aquaculture, which has become a hotspot in the field of aquaculture. The current insufficiency of sex marker identification in <i>O. punctatus</i> restricts the process of its unisexual breeding. Rapid identification of sex will help to study the mechanisms of sex determination and accelerate the development of sex-controlled breeding. With the completion of the sequencing of the male and female genomes of <i>O. punctatus</i>, the efficient and precise development of genetic sex markers has been made possible. In this study, we used genome-wide information combined with molecular biology techniques from marker sequences to further establish a rapid method for DNA insertion variant detection in the intron of <i>O. punctatus erc2</i> gene, which can be used to rapidly, accurately, and efficiently identify whether DNA insertion occurs in the intron of <i>O. punctatus erc2</i> gene to be detected, and to identify the sex of <i>O. punctatus</i> to be detected. It could also be distinguished by agarose gel electrophoresis, which would shorten the time for accurate identification and improves the detection efficiency. Homozygous comparison of male and female individuals showed that the length of the DNA fragment of the <i>erc2</i> gene was 239 bp on chromosome X<sub>1</sub> and 1173 bp on chromosome Y. It can therefore be inferred that a 934 bp insertion fragment exists on the Y chromosome. The PCR amplification results showed that two DNA fragments of 1173 bp and 239 bp could be amplified in male <i>O. punctatus</i>, and the 1173 bp fragment was a marker fragment specific to the variant intron <i>erc2</i> gene, while only a single DNA fragment of 239 bp was amplified in female <i>O. punctatus</i>. It has important significance and application value in the study of neurotransmitter transmission and environmental adaptability of female and male fish based on <i>erc2</i> gene, as well as the identification of male and female sex, the preparation of high male fry, and family breeding.</p></div>\",\"PeriodicalId\":690,\"journal\":{\"name\":\"Marine Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10126-024-10363-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10363-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

斑点叉尾鮰(Oplegnathus punctatus)是最珍贵的海水养殖物种之一,其生长具有明显的性二型,雄性生长速度明显快于雌性。刀鲚不仅具有优良的生长特性和较高的食用价值,在水产养殖中也表现出较高的经济价值,已成为水产养殖领域的热点。目前,标枪鱼性别标记鉴定的不足限制了其单性繁殖的进程。快速鉴定性别将有助于研究性别决定机制,加快性别控制育种的发展。随着O. punctatus雌雄基因组测序的完成,高效、精确地开发遗传性别的标记成为可能。本研究利用标记序列中的全基因组信息结合分子生物学技术,进一步建立了一种快速检测O. punctatus erc2基因内含子DNA插入变异的方法,可用于快速、准确、高效地鉴定待检测的O. punctatus erc2基因内含子是否发生DNA插入,并确定待检测的O. punctatus的性别。此外,还可通过琼脂糖凝胶电泳进行鉴别,从而缩短准确鉴定的时间,提高检测效率。雌雄个体的同源比较结果显示,erc2基因的DNA片段长度在X1染色体上为239 bp,在Y染色体上为1173 bp,因此可以推断Y染色体上存在一个934 bp的插入片段。PCR扩增结果表明,雄性斑尾鱼可扩增出1173 bp和239 bp的两个DNA片段,其中1173 bp片段是变异内含子erc2基因的特异性标记片段,而雌性斑尾鱼只扩增出239 bp的单个DNA片段。该研究对基于erc2基因的雌雄鱼神经递质传递和环境适应性研究,以及雌雄性别鉴定、高雄鱼苗的培育和家系繁育等具有重要意义和应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploitation and Application of a New Genetic Sex Marker Based on Intron Insertion Variation of erc2 Gene in Oplegnathus punctatus

Exploitation and Application of a New Genetic Sex Marker Based on Intron Insertion Variation of erc2 Gene in Oplegnathus punctatus

Spotted knifejaw (Oplegnathus punctatus), one of the most valuable mariculture species, grows with significant sexual dimorphism, with males growing significantly faster than females. O. punctatus not only has excellent growth characteristics and high food value, but also shows high economic value in aquaculture, which has become a hotspot in the field of aquaculture. The current insufficiency of sex marker identification in O. punctatus restricts the process of its unisexual breeding. Rapid identification of sex will help to study the mechanisms of sex determination and accelerate the development of sex-controlled breeding. With the completion of the sequencing of the male and female genomes of O. punctatus, the efficient and precise development of genetic sex markers has been made possible. In this study, we used genome-wide information combined with molecular biology techniques from marker sequences to further establish a rapid method for DNA insertion variant detection in the intron of O. punctatus erc2 gene, which can be used to rapidly, accurately, and efficiently identify whether DNA insertion occurs in the intron of O. punctatus erc2 gene to be detected, and to identify the sex of O. punctatus to be detected. It could also be distinguished by agarose gel electrophoresis, which would shorten the time for accurate identification and improves the detection efficiency. Homozygous comparison of male and female individuals showed that the length of the DNA fragment of the erc2 gene was 239 bp on chromosome X1 and 1173 bp on chromosome Y. It can therefore be inferred that a 934 bp insertion fragment exists on the Y chromosome. The PCR amplification results showed that two DNA fragments of 1173 bp and 239 bp could be amplified in male O. punctatus, and the 1173 bp fragment was a marker fragment specific to the variant intron erc2 gene, while only a single DNA fragment of 239 bp was amplified in female O. punctatus. It has important significance and application value in the study of neurotransmitter transmission and environmental adaptability of female and male fish based on erc2 gene, as well as the identification of male and female sex, the preparation of high male fry, and family breeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Biotechnology
Marine Biotechnology 工程技术-海洋与淡水生物学
CiteScore
4.80
自引率
3.30%
发文量
95
审稿时长
2 months
期刊介绍: Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信