Xinghai Liu, Lina Sun, Ziming Li, Hongyuan Zhao, Yujia Yang
{"title":"开发可靠的雄性特异性分子标记以鉴定日本海参的基因性别","authors":"Xinghai Liu, Lina Sun, Ziming Li, Hongyuan Zhao, Yujia Yang","doi":"10.1007/s10126-024-10364-2","DOIUrl":null,"url":null,"abstract":"<div><p><i>Apostichopus japonicus</i> is an important marine aquaculture species in China, with high nutritional and economic value. In <i>A. japonicus</i>, there is no obvious sexual dimorphism in external appearance, and sex differentiation primarily relies on the observation of mature gonads after dissection, which leads to difficulties in sex identification. The confusion in sex identification greatly reduces breeding efficiency in the sea cucumber industry. Therefore, developing a reliable sex-specific marker is crucial. In this study, we identified 586 male-specific sequences through whole-genome assembly and sequence alignment, but did not identify any female-specific sequences, inferring an XY-type sex determination system in sea cucumbers. We developed a set of male-specific molecular markers to establish an accurate, stable, and widely adaptable genetic sex identification technique for <i>A. japonicus</i>. The male-specific molecular markers were validated with 100% accuracy in sea cucumber populations from six different geographical regions in China. In conclusion, this study provides further evidence for the XY-type sex determination system in <i>A. japonicus</i> and establishes an effective genetic sex identification method for multi-geographic populations, which benefits future study on reproductive biology and has significant implications in sea cucumber aquaculture industry.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Reliable Male-Specific Molecular Markers for Genetic Sex Identification in Sea Cucumber Apostichopus japonicus\",\"authors\":\"Xinghai Liu, Lina Sun, Ziming Li, Hongyuan Zhao, Yujia Yang\",\"doi\":\"10.1007/s10126-024-10364-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Apostichopus japonicus</i> is an important marine aquaculture species in China, with high nutritional and economic value. In <i>A. japonicus</i>, there is no obvious sexual dimorphism in external appearance, and sex differentiation primarily relies on the observation of mature gonads after dissection, which leads to difficulties in sex identification. The confusion in sex identification greatly reduces breeding efficiency in the sea cucumber industry. Therefore, developing a reliable sex-specific marker is crucial. In this study, we identified 586 male-specific sequences through whole-genome assembly and sequence alignment, but did not identify any female-specific sequences, inferring an XY-type sex determination system in sea cucumbers. We developed a set of male-specific molecular markers to establish an accurate, stable, and widely adaptable genetic sex identification technique for <i>A. japonicus</i>. The male-specific molecular markers were validated with 100% accuracy in sea cucumber populations from six different geographical regions in China. In conclusion, this study provides further evidence for the XY-type sex determination system in <i>A. japonicus</i> and establishes an effective genetic sex identification method for multi-geographic populations, which benefits future study on reproductive biology and has significant implications in sea cucumber aquaculture industry.</p></div>\",\"PeriodicalId\":690,\"journal\":{\"name\":\"Marine Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10126-024-10364-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10364-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Development of Reliable Male-Specific Molecular Markers for Genetic Sex Identification in Sea Cucumber Apostichopus japonicus
Apostichopus japonicus is an important marine aquaculture species in China, with high nutritional and economic value. In A. japonicus, there is no obvious sexual dimorphism in external appearance, and sex differentiation primarily relies on the observation of mature gonads after dissection, which leads to difficulties in sex identification. The confusion in sex identification greatly reduces breeding efficiency in the sea cucumber industry. Therefore, developing a reliable sex-specific marker is crucial. In this study, we identified 586 male-specific sequences through whole-genome assembly and sequence alignment, but did not identify any female-specific sequences, inferring an XY-type sex determination system in sea cucumbers. We developed a set of male-specific molecular markers to establish an accurate, stable, and widely adaptable genetic sex identification technique for A. japonicus. The male-specific molecular markers were validated with 100% accuracy in sea cucumber populations from six different geographical regions in China. In conclusion, this study provides further evidence for the XY-type sex determination system in A. japonicus and establishes an effective genetic sex identification method for multi-geographic populations, which benefits future study on reproductive biology and has significant implications in sea cucumber aquaculture industry.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.