Ramakrishnan Subhashini , Thomas Jebastin , Abbas M Khasamwala , Khalid Mashay Al-Anazi , Mohammad Abul Farah , Muthusamy Jeyam
{"title":"针对球马拉色菌蒽酸磷酸核糖基转移酶的 Albizia amara 植物成分的实验和计算见解","authors":"Ramakrishnan Subhashini , Thomas Jebastin , Abbas M Khasamwala , Khalid Mashay Al-Anazi , Mohammad Abul Farah , Muthusamy Jeyam","doi":"10.1016/j.actatropica.2024.107365","DOIUrl":null,"url":null,"abstract":"<div><p>The fungus <em>Malassezia globosa</em> is often responsible for superficial mycoses posing significant treatment challenges because of the unfavourable side effects of available antifungal drugs. To reduce potential hazards to the host and overcome these hurdles, new therapeutic medicines must be developed that selectively target enzymes unique to the pathogen. This study focuses on the enzyme anthranilate phosphoribosyltransferase (AnPRT), which is vital to <em>M. globosa</em>'s tryptophan production pathway. To learn more about the function of the AnPRT enzyme, we modeled, validated, and simulated its structure. Moreover, many bioactive components were found in different extracts from the plant <em>Albizia amara</em> after phytochemical screening. Interestingly, at doses ranging from 500 to 2000 µg/ml, the chloroform extract showed significant antifungal activity, with inhibition zones measured between 11.0 ± 0.0 and 25.6 ± 0.6 mm. According to molecular docking analyses, the compounds from the active extract, particularly 2-tert-Butyl-4-isopropyl-5-methylphenol, interacted with the AnPRT enzyme's critical residues, ARG 205 and PHE 214, with an effective binding energy of -4.9 kcal/mol. The extract's revealed component satisfies the requirements for drug-likeness and shows promise as a strong antifungal agent against infections caused by <em>M. globosa</em>. These findings imply that using plant-derived chemicals to target the AnPRT enzyme is a viable path for the creation of innovative antifungal treatments.</p></div>","PeriodicalId":7240,"journal":{"name":"Acta tropica","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and computational insights of Albizia amara phytoconstituents targeting anthranilate phosphoribosyltransferase from Malassezia globosa\",\"authors\":\"Ramakrishnan Subhashini , Thomas Jebastin , Abbas M Khasamwala , Khalid Mashay Al-Anazi , Mohammad Abul Farah , Muthusamy Jeyam\",\"doi\":\"10.1016/j.actatropica.2024.107365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fungus <em>Malassezia globosa</em> is often responsible for superficial mycoses posing significant treatment challenges because of the unfavourable side effects of available antifungal drugs. To reduce potential hazards to the host and overcome these hurdles, new therapeutic medicines must be developed that selectively target enzymes unique to the pathogen. This study focuses on the enzyme anthranilate phosphoribosyltransferase (AnPRT), which is vital to <em>M. globosa</em>'s tryptophan production pathway. To learn more about the function of the AnPRT enzyme, we modeled, validated, and simulated its structure. Moreover, many bioactive components were found in different extracts from the plant <em>Albizia amara</em> after phytochemical screening. Interestingly, at doses ranging from 500 to 2000 µg/ml, the chloroform extract showed significant antifungal activity, with inhibition zones measured between 11.0 ± 0.0 and 25.6 ± 0.6 mm. According to molecular docking analyses, the compounds from the active extract, particularly 2-tert-Butyl-4-isopropyl-5-methylphenol, interacted with the AnPRT enzyme's critical residues, ARG 205 and PHE 214, with an effective binding energy of -4.9 kcal/mol. The extract's revealed component satisfies the requirements for drug-likeness and shows promise as a strong antifungal agent against infections caused by <em>M. globosa</em>. These findings imply that using plant-derived chemicals to target the AnPRT enzyme is a viable path for the creation of innovative antifungal treatments.</p></div>\",\"PeriodicalId\":7240,\"journal\":{\"name\":\"Acta tropica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta tropica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001706X2400247X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta tropica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001706X2400247X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Experimental and computational insights of Albizia amara phytoconstituents targeting anthranilate phosphoribosyltransferase from Malassezia globosa
The fungus Malassezia globosa is often responsible for superficial mycoses posing significant treatment challenges because of the unfavourable side effects of available antifungal drugs. To reduce potential hazards to the host and overcome these hurdles, new therapeutic medicines must be developed that selectively target enzymes unique to the pathogen. This study focuses on the enzyme anthranilate phosphoribosyltransferase (AnPRT), which is vital to M. globosa's tryptophan production pathway. To learn more about the function of the AnPRT enzyme, we modeled, validated, and simulated its structure. Moreover, many bioactive components were found in different extracts from the plant Albizia amara after phytochemical screening. Interestingly, at doses ranging from 500 to 2000 µg/ml, the chloroform extract showed significant antifungal activity, with inhibition zones measured between 11.0 ± 0.0 and 25.6 ± 0.6 mm. According to molecular docking analyses, the compounds from the active extract, particularly 2-tert-Butyl-4-isopropyl-5-methylphenol, interacted with the AnPRT enzyme's critical residues, ARG 205 and PHE 214, with an effective binding energy of -4.9 kcal/mol. The extract's revealed component satisfies the requirements for drug-likeness and shows promise as a strong antifungal agent against infections caused by M. globosa. These findings imply that using plant-derived chemicals to target the AnPRT enzyme is a viable path for the creation of innovative antifungal treatments.
期刊介绍:
Acta Tropica, is an international journal on infectious diseases that covers public health sciences and biomedical research with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics.