Lily G. Beck, Jeffrey B. Krall, Parker J. Nichols, Quentin Vicens, Morkos A. Henen, Beat Vögeli
{"title":"Z-DNA 结合蛋白 1 N 端串联 Zα1-Zα2 结构域的溶液核磁共振骨架分配。","authors":"Lily G. Beck, Jeffrey B. Krall, Parker J. Nichols, Quentin Vicens, Morkos A. Henen, Beat Vögeli","doi":"10.1007/s12104-024-10195-1","DOIUrl":null,"url":null,"abstract":"<div><p>The detection of nucleic acids that are present in atypical conformations is a crucial trigger of the innate immune response. Human Z-DNA binding protein 1 (ZBP1) is a pattern recognition receptor that harbors two Zα domains that recognize Z-DNA and Z-RNA. ZBP1 detects this alternate nucleic acid conformation as foreign, and upon stabilization of these substrates, it triggers activation of an immune response. Here, we present the backbone chemical shift assignment of a construct encompassing the Zα1 and Zα2 domains as well as the interconnecting linker of ZBP1. These assignments can be directly transferred to the isolated Zα1 and Zα2 domains, thereby demonstrating that these domains maintain virtually identical structures in the tandem context.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"245 - 252"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution NMR backbone assignment of the N-terminal tandem Zα1-Zα2 domains of Z-DNA binding protein 1\",\"authors\":\"Lily G. Beck, Jeffrey B. Krall, Parker J. Nichols, Quentin Vicens, Morkos A. Henen, Beat Vögeli\",\"doi\":\"10.1007/s12104-024-10195-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The detection of nucleic acids that are present in atypical conformations is a crucial trigger of the innate immune response. Human Z-DNA binding protein 1 (ZBP1) is a pattern recognition receptor that harbors two Zα domains that recognize Z-DNA and Z-RNA. ZBP1 detects this alternate nucleic acid conformation as foreign, and upon stabilization of these substrates, it triggers activation of an immune response. Here, we present the backbone chemical shift assignment of a construct encompassing the Zα1 and Zα2 domains as well as the interconnecting linker of ZBP1. These assignments can be directly transferred to the isolated Zα1 and Zα2 domains, thereby demonstrating that these domains maintain virtually identical structures in the tandem context.</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\"18 2\",\"pages\":\"245 - 252\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-024-10195-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10195-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Solution NMR backbone assignment of the N-terminal tandem Zα1-Zα2 domains of Z-DNA binding protein 1
The detection of nucleic acids that are present in atypical conformations is a crucial trigger of the innate immune response. Human Z-DNA binding protein 1 (ZBP1) is a pattern recognition receptor that harbors two Zα domains that recognize Z-DNA and Z-RNA. ZBP1 detects this alternate nucleic acid conformation as foreign, and upon stabilization of these substrates, it triggers activation of an immune response. Here, we present the backbone chemical shift assignment of a construct encompassing the Zα1 and Zα2 domains as well as the interconnecting linker of ZBP1. These assignments can be directly transferred to the isolated Zα1 and Zα2 domains, thereby demonstrating that these domains maintain virtually identical structures in the tandem context.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.