Anastasia I. Bezrukova, Katerina S. Basharova, Galina V. Baydakova, Ekaterina Y. Zakharova, Sofya N. Pchelina, Tatiana S. Usenko
{"title":"抑制 MTOR 蛋白激酶对外周血单核细胞衍生巨噬细胞和 SH-SY5Y 神经母细胞瘤细胞系溶酶体活性和α-突触核蛋白的剂量依赖性改变--评估帕金森病的治疗前景。","authors":"Anastasia I. Bezrukova, Katerina S. Basharova, Galina V. Baydakova, Ekaterina Y. Zakharova, Sofya N. Pchelina, Tatiana S. Usenko","doi":"10.1134/S0006297924070113","DOIUrl":null,"url":null,"abstract":"<p>To date, the molecular mechanisms of the common neurodegenerative disorder Parkinson’s disease (PD) are unknown and, as a result, there is no neuroprotective therapy that may stop or slow down the process of neuronal cell death. The aim of the current study was to evaluate the prospects of using the mTOR molecule as a potential target for PD therapy due to the dose-dependent effect of mTOR kinase activity inhibition on cellular parameters associated with, PD pathogenesis. The study used peripheral blood monocyte-derived macrophages and SH-SY5Y neuroblastoma cell line. As a result, we have for the first time showed that inhibition of mTOR by Torin1 only at a concentration of 100 nM affects the level of the lysosomal enzyme glucocerebrosidase (GCase), encoded by the <i>GBA1</i> gene. Mutations in GBA1 are considered a high-risk factor for PD development. This concentration led a decrease in pathological phosphorylated alpha-synuclein (Ser129), an increase in its stable tetrameric form with no changes in the lysosomal enzyme activities and concentrations of lysosphingolipids. Our findings suggest that inhibition of the mTOR protein kinase could be a promising approach for developing therapies for PD, particularly for GBA1-associated PD.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0006297924070113.pdf","citationCount":"0","resultStr":"{\"title\":\"Dose-Dependent Alterations of Lysosomal Activity and Alpha-Synuclein in Peripheral Blood Monocyte-Derived Macrophages and SH-SY5Y Neuroblastoma Cell Line by upon Inhibition of MTOR Protein Kinase – Assessment of the Prospects of Parkinson’s Disease Therapy\",\"authors\":\"Anastasia I. Bezrukova, Katerina S. Basharova, Galina V. Baydakova, Ekaterina Y. Zakharova, Sofya N. Pchelina, Tatiana S. Usenko\",\"doi\":\"10.1134/S0006297924070113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To date, the molecular mechanisms of the common neurodegenerative disorder Parkinson’s disease (PD) are unknown and, as a result, there is no neuroprotective therapy that may stop or slow down the process of neuronal cell death. The aim of the current study was to evaluate the prospects of using the mTOR molecule as a potential target for PD therapy due to the dose-dependent effect of mTOR kinase activity inhibition on cellular parameters associated with, PD pathogenesis. The study used peripheral blood monocyte-derived macrophages and SH-SY5Y neuroblastoma cell line. As a result, we have for the first time showed that inhibition of mTOR by Torin1 only at a concentration of 100 nM affects the level of the lysosomal enzyme glucocerebrosidase (GCase), encoded by the <i>GBA1</i> gene. Mutations in GBA1 are considered a high-risk factor for PD development. This concentration led a decrease in pathological phosphorylated alpha-synuclein (Ser129), an increase in its stable tetrameric form with no changes in the lysosomal enzyme activities and concentrations of lysosphingolipids. Our findings suggest that inhibition of the mTOR protein kinase could be a promising approach for developing therapies for PD, particularly for GBA1-associated PD.</p>\",\"PeriodicalId\":483,\"journal\":{\"name\":\"Biochemistry (Moscow)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S0006297924070113.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow)\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0006297924070113\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow)","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0006297924070113","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dose-Dependent Alterations of Lysosomal Activity and Alpha-Synuclein in Peripheral Blood Monocyte-Derived Macrophages and SH-SY5Y Neuroblastoma Cell Line by upon Inhibition of MTOR Protein Kinase – Assessment of the Prospects of Parkinson’s Disease Therapy
To date, the molecular mechanisms of the common neurodegenerative disorder Parkinson’s disease (PD) are unknown and, as a result, there is no neuroprotective therapy that may stop or slow down the process of neuronal cell death. The aim of the current study was to evaluate the prospects of using the mTOR molecule as a potential target for PD therapy due to the dose-dependent effect of mTOR kinase activity inhibition on cellular parameters associated with, PD pathogenesis. The study used peripheral blood monocyte-derived macrophages and SH-SY5Y neuroblastoma cell line. As a result, we have for the first time showed that inhibition of mTOR by Torin1 only at a concentration of 100 nM affects the level of the lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene. Mutations in GBA1 are considered a high-risk factor for PD development. This concentration led a decrease in pathological phosphorylated alpha-synuclein (Ser129), an increase in its stable tetrameric form with no changes in the lysosomal enzyme activities and concentrations of lysosphingolipids. Our findings suggest that inhibition of the mTOR protein kinase could be a promising approach for developing therapies for PD, particularly for GBA1-associated PD.
期刊介绍:
Biochemistry (Moscow) is the journal that includes research papers in all fields of biochemistry as well as biochemical aspects of molecular biology, bioorganic chemistry, microbiology, immunology, physiology, and biomedical sciences. Coverage also extends to new experimental methods in biochemistry, theoretical contributions of biochemical importance, reviews of contemporary biochemical topics, and mini-reviews (News in Biochemistry).