利用绿色氧化锌纳米粒子作为抗坏血酸的传感平台。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Talanta Pub Date : 2024-12-01 Epub Date: 2024-08-24 DOI:10.1016/j.talanta.2024.126769
Andressa N R Leal, Winnie Q Brandão, Maurício F de Aguiar, Dionísio G Kór, Emanoel L T França, Celso P de Melo, Yeda M B de Almeida
{"title":"利用绿色氧化锌纳米粒子作为抗坏血酸的传感平台。","authors":"Andressa N R Leal, Winnie Q Brandão, Maurício F de Aguiar, Dionísio G Kór, Emanoel L T França, Celso P de Melo, Yeda M B de Almeida","doi":"10.1016/j.talanta.2024.126769","DOIUrl":null,"url":null,"abstract":"<p><p>We prepared zinc oxide nanoparticles (ZnO NPs) via a green synthesis and used them for the fluorescence sensing of ascorbic acid (AA). For obtaining these nanoparticles, we used an extract from Batavia lettuce as a reducing agent for zinc acetate in a simple, fast, and environmentally friendly synthesis. The ZnO NPs were characterized by X-ray diffractometry (XRD), ultraviolet-visible spectroscopy (UV-vis), Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), photoluminescence, point of zero-charge (pH<sub>pzc</sub>), and chromaticity studies. We verified that the ZnO NPs had an average diameter of 6 nm, with a wurtzite crystalline structure, and when excited at 320 nm emitted radiation in the blue region. The methodology for AA detection is based on the observed increase in fluorescence of the molecule complex formed on the ZnO NPs surface after 20 min of interaction. The results indicated that the proposed technique of analysis is fast, simple, and highly sensitive, with a detection limit for AA of 5.15 μM. Furthermore, the nanoparticles presented excellent photostability for at least 30 days, and low sensitivity to other biological organic molecules. The green ZnO NPs also exhibited an efficient response to the presence of AA in actual complex samples, suggesting that the platform here proposed can find use in clinical analysis protocols.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing green zinc oxide nanoparticles as a sensing platform for ascorbic acid.\",\"authors\":\"Andressa N R Leal, Winnie Q Brandão, Maurício F de Aguiar, Dionísio G Kór, Emanoel L T França, Celso P de Melo, Yeda M B de Almeida\",\"doi\":\"10.1016/j.talanta.2024.126769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We prepared zinc oxide nanoparticles (ZnO NPs) via a green synthesis and used them for the fluorescence sensing of ascorbic acid (AA). For obtaining these nanoparticles, we used an extract from Batavia lettuce as a reducing agent for zinc acetate in a simple, fast, and environmentally friendly synthesis. The ZnO NPs were characterized by X-ray diffractometry (XRD), ultraviolet-visible spectroscopy (UV-vis), Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), photoluminescence, point of zero-charge (pH<sub>pzc</sub>), and chromaticity studies. We verified that the ZnO NPs had an average diameter of 6 nm, with a wurtzite crystalline structure, and when excited at 320 nm emitted radiation in the blue region. The methodology for AA detection is based on the observed increase in fluorescence of the molecule complex formed on the ZnO NPs surface after 20 min of interaction. The results indicated that the proposed technique of analysis is fast, simple, and highly sensitive, with a detection limit for AA of 5.15 μM. Furthermore, the nanoparticles presented excellent photostability for at least 30 days, and low sensitivity to other biological organic molecules. The green ZnO NPs also exhibited an efficient response to the presence of AA in actual complex samples, suggesting that the platform here proposed can find use in clinical analysis protocols.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.126769\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126769","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们通过绿色合成法制备了氧化锌纳米粒子(ZnO NPs),并将其用于抗坏血酸(AA)的荧光传感。为了获得这些纳米粒子,我们使用了巴达维亚莴苣的提取物作为醋酸锌的还原剂,这是一种简单、快速、环保的合成方法。我们通过 X 射线衍射仪 (XRD)、紫外-可见光谱 (UV-vis)、傅立叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM)、动态光散射 (DLS)、热重分析 (TGA)、光致发光、零电荷点 (pHpzc) 和色度研究对氧化锌纳米粒子进行了表征。我们验证了 ZnO NPs 的平均直径为 6 nm,具有钨状晶结构,在 320 nm 处激发时会发出蓝色区域的辐射。AA 检测方法是基于 ZnO NPs 表面形成的分子复合物在相互作用 20 分钟后的荧光增加。结果表明,所提出的分析技术快速、简单、灵敏度高,AA 的检测限为 5.15 μM。此外,这种纳米粒子还具有良好的光稳定性,至少可保持 30 天,而且对其他生物有机分子的敏感性较低。绿色 ZnO NPs 对实际复杂样品中存在的 AA 也表现出高效的响应,这表明本文提出的平台可用于临床分析方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing green zinc oxide nanoparticles as a sensing platform for ascorbic acid.

We prepared zinc oxide nanoparticles (ZnO NPs) via a green synthesis and used them for the fluorescence sensing of ascorbic acid (AA). For obtaining these nanoparticles, we used an extract from Batavia lettuce as a reducing agent for zinc acetate in a simple, fast, and environmentally friendly synthesis. The ZnO NPs were characterized by X-ray diffractometry (XRD), ultraviolet-visible spectroscopy (UV-vis), Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), photoluminescence, point of zero-charge (pHpzc), and chromaticity studies. We verified that the ZnO NPs had an average diameter of 6 nm, with a wurtzite crystalline structure, and when excited at 320 nm emitted radiation in the blue region. The methodology for AA detection is based on the observed increase in fluorescence of the molecule complex formed on the ZnO NPs surface after 20 min of interaction. The results indicated that the proposed technique of analysis is fast, simple, and highly sensitive, with a detection limit for AA of 5.15 μM. Furthermore, the nanoparticles presented excellent photostability for at least 30 days, and low sensitivity to other biological organic molecules. The green ZnO NPs also exhibited an efficient response to the presence of AA in actual complex samples, suggesting that the platform here proposed can find use in clinical analysis protocols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信