{"title":"MFF-DTA:药物-靶点亲和力预测的多尺度特征融合。","authors":"Xiwei Tang , Wanjun Ma , Mengyun Yang , Wenjun Li","doi":"10.1016/j.ymeth.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately predicting drug-target affinity is crucial in expediting the discovery and development of new drugs, which is a complex and risky process. Identifying these interactions not only aids in screening potential compounds but also guides further optimization. To address this, we propose a multi-perspective feature fusion model, MFF-DTA, which integrates chemical structure, biological sequence, and other data to comprehensively capture drug-target affinity features. The MFF-DTA model incorporates multiple feature learning components, each of which is capable of extracting drug molecular features and protein target information, respectively. These components are able to obtain key information from both global and local perspectives. Then, these features from different perspectives are efficiently combined using specific splicing strategies to create a comprehensive representation. Finally, the model uses the fused features to predict drug-target affinity. Comparative experiments show that MFF-DTA performs optimally on the Davis and KIBA data sets. Ablation experiments demonstrate that removing specific components results in the loss of unique information, thus confirming the effectiveness of the MFF-DTA design. Improvements in DTA prediction methods will decrease costs and time in drug development, enhancing industry efficiency and ultimately benefiting patients.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"231 ","pages":"Pages 1-7"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1046202324001890/pdfft?md5=a691264b50021b10f091a9d3d57ce863&pid=1-s2.0-S1046202324001890-main.pdf","citationCount":"0","resultStr":"{\"title\":\"MFF-DTA: Multi-scale feature fusion for drug-target affinity prediction\",\"authors\":\"Xiwei Tang , Wanjun Ma , Mengyun Yang , Wenjun Li\",\"doi\":\"10.1016/j.ymeth.2024.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurately predicting drug-target affinity is crucial in expediting the discovery and development of new drugs, which is a complex and risky process. Identifying these interactions not only aids in screening potential compounds but also guides further optimization. To address this, we propose a multi-perspective feature fusion model, MFF-DTA, which integrates chemical structure, biological sequence, and other data to comprehensively capture drug-target affinity features. The MFF-DTA model incorporates multiple feature learning components, each of which is capable of extracting drug molecular features and protein target information, respectively. These components are able to obtain key information from both global and local perspectives. Then, these features from different perspectives are efficiently combined using specific splicing strategies to create a comprehensive representation. Finally, the model uses the fused features to predict drug-target affinity. Comparative experiments show that MFF-DTA performs optimally on the Davis and KIBA data sets. Ablation experiments demonstrate that removing specific components results in the loss of unique information, thus confirming the effectiveness of the MFF-DTA design. Improvements in DTA prediction methods will decrease costs and time in drug development, enhancing industry efficiency and ultimately benefiting patients.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"231 \",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1046202324001890/pdfft?md5=a691264b50021b10f091a9d3d57ce863&pid=1-s2.0-S1046202324001890-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324001890\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324001890","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
准确预测药物与靶点的亲和力对于加快新药的发现和开发至关重要,而这是一个复杂而又充满风险的过程。识别这些相互作用不仅有助于筛选潜在化合物,还能指导进一步优化。为此,我们提出了一种多视角特征融合模型 MFF-DTA,它整合了化学结构、生物序列和其他数据,以全面捕捉药物-靶点亲和力特征。MFF-DTA 模型包含多个特征学习组件,每个组件都能分别提取药物分子特征和蛋白质靶标信息。这些组件能够从全局和局部两个角度获取关键信息。然后,利用特定的拼接策略将这些来自不同角度的特征有效地结合起来,以创建一个全面的表征。最后,该模型利用融合后的特征来预测药物与靶标的亲和力。对比实验表明,MFF-DTA 在戴维斯和 KIBA 数据集上的表现最佳。消融实验表明,去除特定成分会导致独特信息的丢失,从而证实了 MFF-DTA 设计的有效性。DTA 预测方法的改进将减少药物开发的成本和时间,提高行业效率,最终造福患者。
MFF-DTA: Multi-scale feature fusion for drug-target affinity prediction
Accurately predicting drug-target affinity is crucial in expediting the discovery and development of new drugs, which is a complex and risky process. Identifying these interactions not only aids in screening potential compounds but also guides further optimization. To address this, we propose a multi-perspective feature fusion model, MFF-DTA, which integrates chemical structure, biological sequence, and other data to comprehensively capture drug-target affinity features. The MFF-DTA model incorporates multiple feature learning components, each of which is capable of extracting drug molecular features and protein target information, respectively. These components are able to obtain key information from both global and local perspectives. Then, these features from different perspectives are efficiently combined using specific splicing strategies to create a comprehensive representation. Finally, the model uses the fused features to predict drug-target affinity. Comparative experiments show that MFF-DTA performs optimally on the Davis and KIBA data sets. Ablation experiments demonstrate that removing specific components results in the loss of unique information, thus confirming the effectiveness of the MFF-DTA design. Improvements in DTA prediction methods will decrease costs and time in drug development, enhancing industry efficiency and ultimately benefiting patients.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.