在可见光下使用 S 型 MoS2/Co3O4 异质结复合材料通过过一硫酸盐活化高效降解氧氟沙星:性能和机理研究。

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
{"title":"在可见光下使用 S 型 MoS2/Co3O4 异质结复合材料通过过一硫酸盐活化高效降解氧氟沙星:性能和机理研究。","authors":"","doi":"10.1016/j.envres.2024.119891","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfate-radical-mediated photocatalysis technology peroxymonosulfate (PMS) activation via visible light irradiation shows great promise for water treatment applications. However, its effectiveness largely depends on the bifunctional performance of photocatalysis and PMS activation provided by the catalysts. In this study, we successfully synthesized a novel S-scheme MoS<sub>2</sub>/Co<sub>3</sub>O<sub>4</sub> (MC) heterojunction composite by a hydrothermal method and employed it for the first time to activate PMS for ofloxacin (OFX) degradation under visible light irradiation. The MC-5/PMS/Vis system achieved an impressive 85.11% OFX degradation efficiency within 1 min and complete OFX removal within 15 min under optimal conditions, with an apparent first-order kinetics rate constant of 0.429 min<sup>−1</sup>. Reactive species trapping experiments and electron spin resonance analysis identified <sup>1</sup>O<sub>2</sub>, h<sup>+</sup>, and •O<sub>2</sub><sup>−</sup> as the primary active species responsible for OFX degradation. Photoelectrochemical analyses and density functional theory calculations indicated the formation of a built-in electric field between MoS<sub>2</sub> and Co<sub>3</sub>O<sub>4</sub>, which enhanced the separation and migration of photoinduced carriers. Additionally, the Co–Mo interaction further increased the yield of dominant reactive species, thereby boosting photocatalytic activity. This work underscores the potential of visible-light-assisted PMS-mediated photocatalysis using Co<sub>3</sub>O<sub>4</sub>-based catalysts for effective pollutant control.</p></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient ofloxacin degradation via peroxymonosulfate activation using an S-scheme MoS2/Co3O4 heterojunction composite under visible light: Performance and mechanistic insights\",\"authors\":\"\",\"doi\":\"10.1016/j.envres.2024.119891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sulfate-radical-mediated photocatalysis technology peroxymonosulfate (PMS) activation via visible light irradiation shows great promise for water treatment applications. However, its effectiveness largely depends on the bifunctional performance of photocatalysis and PMS activation provided by the catalysts. In this study, we successfully synthesized a novel S-scheme MoS<sub>2</sub>/Co<sub>3</sub>O<sub>4</sub> (MC) heterojunction composite by a hydrothermal method and employed it for the first time to activate PMS for ofloxacin (OFX) degradation under visible light irradiation. The MC-5/PMS/Vis system achieved an impressive 85.11% OFX degradation efficiency within 1 min and complete OFX removal within 15 min under optimal conditions, with an apparent first-order kinetics rate constant of 0.429 min<sup>−1</sup>. Reactive species trapping experiments and electron spin resonance analysis identified <sup>1</sup>O<sub>2</sub>, h<sup>+</sup>, and •O<sub>2</sub><sup>−</sup> as the primary active species responsible for OFX degradation. Photoelectrochemical analyses and density functional theory calculations indicated the formation of a built-in electric field between MoS<sub>2</sub> and Co<sub>3</sub>O<sub>4</sub>, which enhanced the separation and migration of photoinduced carriers. Additionally, the Co–Mo interaction further increased the yield of dominant reactive species, thereby boosting photocatalytic activity. This work underscores the potential of visible-light-assisted PMS-mediated photocatalysis using Co<sub>3</sub>O<sub>4</sub>-based catalysts for effective pollutant control.</p></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124017961\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124017961","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过可见光照射实现硫酸根介导的光催化技术过氧单硫酸盐(PMS)活化在水处理应用中大有可为。然而,其有效性在很大程度上取决于催化剂提供的光催化和 PMS 活化的双功能性能。在本研究中,我们采用水热法成功合成了一种新型 S 型 MoS2/Co3O4(MC)异质结复合材料,并首次将其用于活化 PMS,在可见光照射下降解氧氟沙星(OFX)。在最佳条件下,MC-5/PMS/Vis 系统在 1 分钟内实现了令人印象深刻的 85.11% 的 OFX 降解效率,并在 15 分钟内完全去除 OFX,其表观一阶动力学速率常数为 0.429 min-1。活性物种捕获实验和电子自旋共振分析确定 1O2、h+ 和 -O2- 是降解 OFX 的主要活性物种。光电化学分析和密度泛函理论计算表明,MoS2 和 Co3O4 之间形成了内建电场,这增强了光诱导载流子的分离和迁移。此外,Co-Mo 相互作用进一步提高了主要反应物的产量,从而增强了光催化活性。这项研究强调了利用基于 Co3O4 的催化剂进行可见光辅助 PMS 介导光催化以有效控制污染物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient ofloxacin degradation via peroxymonosulfate activation using an S-scheme MoS2/Co3O4 heterojunction composite under visible light: Performance and mechanistic insights

Efficient ofloxacin degradation via peroxymonosulfate activation using an S-scheme MoS2/Co3O4 heterojunction composite under visible light: Performance and mechanistic insights

Sulfate-radical-mediated photocatalysis technology peroxymonosulfate (PMS) activation via visible light irradiation shows great promise for water treatment applications. However, its effectiveness largely depends on the bifunctional performance of photocatalysis and PMS activation provided by the catalysts. In this study, we successfully synthesized a novel S-scheme MoS2/Co3O4 (MC) heterojunction composite by a hydrothermal method and employed it for the first time to activate PMS for ofloxacin (OFX) degradation under visible light irradiation. The MC-5/PMS/Vis system achieved an impressive 85.11% OFX degradation efficiency within 1 min and complete OFX removal within 15 min under optimal conditions, with an apparent first-order kinetics rate constant of 0.429 min−1. Reactive species trapping experiments and electron spin resonance analysis identified 1O2, h+, and •O2 as the primary active species responsible for OFX degradation. Photoelectrochemical analyses and density functional theory calculations indicated the formation of a built-in electric field between MoS2 and Co3O4, which enhanced the separation and migration of photoinduced carriers. Additionally, the Co–Mo interaction further increased the yield of dominant reactive species, thereby boosting photocatalytic activity. This work underscores the potential of visible-light-assisted PMS-mediated photocatalysis using Co3O4-based catalysts for effective pollutant control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信