由微量齐聚物构建的多功能界面层用于高可逆锌阳极

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xixi Zhang, Chenggang Wang, Prof. Jinzhao Huang, Chuanlin Li, Guangmeng Qu, Na Li, Shunshun Zhao, Titi Li, Dingzheng Li, Hongjie Qin, Prof. Xijin Xu
{"title":"由微量齐聚物构建的多功能界面层用于高可逆锌阳极","authors":"Xixi Zhang,&nbsp;Chenggang Wang,&nbsp;Prof. Jinzhao Huang,&nbsp;Chuanlin Li,&nbsp;Guangmeng Qu,&nbsp;Na Li,&nbsp;Shunshun Zhao,&nbsp;Titi Li,&nbsp;Dingzheng Li,&nbsp;Hongjie Qin,&nbsp;Prof. Xijin Xu","doi":"10.1002/anie.202411884","DOIUrl":null,"url":null,"abstract":"<p>The inhomogeneous plating/stripping of Zn anode, attributed to dendrite growth and parasitic reactions at the electrode/electrolyte interface, severely restricts its cycling life-span. Here, trace zwitterions (trifluoroacetate pyridine, TFAPD) are introduced into the aqueous electrolyte to construct a multifunctional interface that enhances the reversibility of Zn anode. The TFA<sup>−</sup> anions with strong specific adsorption adhere onto the Zn surface to reconstruct the inner Helmholtz plane (IHP), preventing the hydrogen evolution and corrosion side reactions caused by free H<sub>2</sub>O. The Py<sup>+</sup> cations accumulate on the outer Helmholtz plane (OHP) of Zn anode with the force of electric field during Zn<sup>2+</sup> plating, forming a shielding layer to uniformize the deposition of Zn<sup>2+</sup>. Besides, the adsorbed TFA<sup>−</sup> and Py<sup>+</sup> promote the desolvation process of Zn<sup>2+</sup> resulting in fast reaction kinetics. Thus, the Zn||Zn cells present an outstanding cycling performance of more than 10000 hours. And even at 85 % utilization rate of Zn, it can stably cycle for over 200 hours at 10 mA cm<sup>−2</sup> and 10 mAh cm<sup>−2</sup>. The Zn||I<sub>2</sub> full cell exhibits a capacity retention of over 95 % even after 30000 cycles. Remarkably, the Zn||I<sub>2</sub> pouch cells (95 mAh) deliver a high-capacity retention of 99 % after 750 cycles.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 51","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Interface Layer Constructed by Trace Zwitterions for Highly Reversible Zinc Anodes\",\"authors\":\"Xixi Zhang,&nbsp;Chenggang Wang,&nbsp;Prof. Jinzhao Huang,&nbsp;Chuanlin Li,&nbsp;Guangmeng Qu,&nbsp;Na Li,&nbsp;Shunshun Zhao,&nbsp;Titi Li,&nbsp;Dingzheng Li,&nbsp;Hongjie Qin,&nbsp;Prof. Xijin Xu\",\"doi\":\"10.1002/anie.202411884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The inhomogeneous plating/stripping of Zn anode, attributed to dendrite growth and parasitic reactions at the electrode/electrolyte interface, severely restricts its cycling life-span. Here, trace zwitterions (trifluoroacetate pyridine, TFAPD) are introduced into the aqueous electrolyte to construct a multifunctional interface that enhances the reversibility of Zn anode. The TFA<sup>−</sup> anions with strong specific adsorption adhere onto the Zn surface to reconstruct the inner Helmholtz plane (IHP), preventing the hydrogen evolution and corrosion side reactions caused by free H<sub>2</sub>O. The Py<sup>+</sup> cations accumulate on the outer Helmholtz plane (OHP) of Zn anode with the force of electric field during Zn<sup>2+</sup> plating, forming a shielding layer to uniformize the deposition of Zn<sup>2+</sup>. Besides, the adsorbed TFA<sup>−</sup> and Py<sup>+</sup> promote the desolvation process of Zn<sup>2+</sup> resulting in fast reaction kinetics. Thus, the Zn||Zn cells present an outstanding cycling performance of more than 10000 hours. And even at 85 % utilization rate of Zn, it can stably cycle for over 200 hours at 10 mA cm<sup>−2</sup> and 10 mAh cm<sup>−2</sup>. The Zn||I<sub>2</sub> full cell exhibits a capacity retention of over 95 % even after 30000 cycles. Remarkably, the Zn||I<sub>2</sub> pouch cells (95 mAh) deliver a high-capacity retention of 99 % after 750 cycles.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"63 51\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202411884\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202411884","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于枝晶生长和电极/电解质界面上的寄生反应,锌阳极的不均匀镀层/剥离严重限制了其循环寿命。在这里,微量齐聚物(三氟乙酸吡啶,TFAPD)被引入到水性电解质中,以构建一个多功能界面,从而提高锌阳极的可逆性。具有强特异性吸附力的 TFA- 阴离子附着在 Zn 表面,重建了内赫尔姆霍兹平面(IHP),阻止了自由 H2O 引起的氢演化和腐蚀副反应。在 Zn2+ 电镀过程中,Py+ 阳离子在电场力的作用下聚集在 Zn 阳极的外赫尔姆霍兹平面(OHP)上,形成一层屏蔽层,使 Zn2+ 均匀沉积。此外,吸附的 TFA- 和 Py+ 促进了 Zn2+ 的脱溶过程,从而加快了反应动力学。因此,Zn||Zn 电池具有超过 10000 小时的出色循环性能。即使锌的利用率为 85%,在 10 mA cm-2 和 10 mAh cm-2 的条件下也能稳定循环 200 小时以上。即使经过 30000 次循环,Zn||I2 全电池的容量保持率也超过了 95%。值得注意的是,Zn||I2 袋装电池(95 mAh)在 750 次循环后的容量保持率高达 99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifunctional Interface Layer Constructed by Trace Zwitterions for Highly Reversible Zinc Anodes

The inhomogeneous plating/stripping of Zn anode, attributed to dendrite growth and parasitic reactions at the electrode/electrolyte interface, severely restricts its cycling life-span. Here, trace zwitterions (trifluoroacetate pyridine, TFAPD) are introduced into the aqueous electrolyte to construct a multifunctional interface that enhances the reversibility of Zn anode. The TFA anions with strong specific adsorption adhere onto the Zn surface to reconstruct the inner Helmholtz plane (IHP), preventing the hydrogen evolution and corrosion side reactions caused by free H2O. The Py+ cations accumulate on the outer Helmholtz plane (OHP) of Zn anode with the force of electric field during Zn2+ plating, forming a shielding layer to uniformize the deposition of Zn2+. Besides, the adsorbed TFA and Py+ promote the desolvation process of Zn2+ resulting in fast reaction kinetics. Thus, the Zn||Zn cells present an outstanding cycling performance of more than 10000 hours. And even at 85 % utilization rate of Zn, it can stably cycle for over 200 hours at 10 mA cm−2 and 10 mAh cm−2. The Zn||I2 full cell exhibits a capacity retention of over 95 % even after 30000 cycles. Remarkably, the Zn||I2 pouch cells (95 mAh) deliver a high-capacity retention of 99 % after 750 cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信