{"title":"用于多墨水三维生物打印的由气泡诱导的声学微流驱动的微搅拌器。","authors":"Mitsuyuki Hidaka, Masaru Kojima and Shinji Sakai","doi":"10.1039/D4LC00552J","DOIUrl":null,"url":null,"abstract":"<p >Recently, the 3D printing of cell-laden hydrogel structures, known as bioprinting, has received increasing attention owing to advances in tissue engineering and drug screening. However, a micromixing technology that efficiently mixes viscous bioinks under mild conditions is needed. Therefore, this study presents a novel method for achieving homogeneous mixing of multiple inks in 3D bioprinting through acoustic stimulation. This technique involves generating an acoustic microstream through bubble oscillations inside a 3D bioprinting nozzle. We determined the optimal hole design for trapping a bubble, hole arrangement, and voltage for efficient mixing, resulting in a four-fold increase in mixing efficiency compared to a single bubble arrangement. Subsequently, we propose a nozzle design for efficient mixing during bioprinting. The proposed nozzle design enabled the successful printing of line structures with a uniform mixture of different viscous bioinks, achieving a mixing efficiency of over 80% for mixing 0.5–1.0 wt% sodium alginate aqueous solutions. Additionally, acoustic stimulation had no adverse effects on cell viability, maintaining a high cell viability of 88% after extrusion. This study presents the first use of a bubble micromixer in 3D bioprinting, demonstrating gentle yet effective multi-ink mixing. We believe this approach will broaden 3D printing applications, particularly for constructing functional structures in 3D bioprinting.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 19","pages":" 4571-4580"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micromixer driven by bubble-induced acoustic microstreaming for multi-ink 3D bioprinting†\",\"authors\":\"Mitsuyuki Hidaka, Masaru Kojima and Shinji Sakai\",\"doi\":\"10.1039/D4LC00552J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recently, the 3D printing of cell-laden hydrogel structures, known as bioprinting, has received increasing attention owing to advances in tissue engineering and drug screening. However, a micromixing technology that efficiently mixes viscous bioinks under mild conditions is needed. Therefore, this study presents a novel method for achieving homogeneous mixing of multiple inks in 3D bioprinting through acoustic stimulation. This technique involves generating an acoustic microstream through bubble oscillations inside a 3D bioprinting nozzle. We determined the optimal hole design for trapping a bubble, hole arrangement, and voltage for efficient mixing, resulting in a four-fold increase in mixing efficiency compared to a single bubble arrangement. Subsequently, we propose a nozzle design for efficient mixing during bioprinting. The proposed nozzle design enabled the successful printing of line structures with a uniform mixture of different viscous bioinks, achieving a mixing efficiency of over 80% for mixing 0.5–1.0 wt% sodium alginate aqueous solutions. Additionally, acoustic stimulation had no adverse effects on cell viability, maintaining a high cell viability of 88% after extrusion. This study presents the first use of a bubble micromixer in 3D bioprinting, demonstrating gentle yet effective multi-ink mixing. We believe this approach will broaden 3D printing applications, particularly for constructing functional structures in 3D bioprinting.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" 19\",\"pages\":\" 4571-4580\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00552j\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00552j","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Micromixer driven by bubble-induced acoustic microstreaming for multi-ink 3D bioprinting†
Recently, the 3D printing of cell-laden hydrogel structures, known as bioprinting, has received increasing attention owing to advances in tissue engineering and drug screening. However, a micromixing technology that efficiently mixes viscous bioinks under mild conditions is needed. Therefore, this study presents a novel method for achieving homogeneous mixing of multiple inks in 3D bioprinting through acoustic stimulation. This technique involves generating an acoustic microstream through bubble oscillations inside a 3D bioprinting nozzle. We determined the optimal hole design for trapping a bubble, hole arrangement, and voltage for efficient mixing, resulting in a four-fold increase in mixing efficiency compared to a single bubble arrangement. Subsequently, we propose a nozzle design for efficient mixing during bioprinting. The proposed nozzle design enabled the successful printing of line structures with a uniform mixture of different viscous bioinks, achieving a mixing efficiency of over 80% for mixing 0.5–1.0 wt% sodium alginate aqueous solutions. Additionally, acoustic stimulation had no adverse effects on cell viability, maintaining a high cell viability of 88% after extrusion. This study presents the first use of a bubble micromixer in 3D bioprinting, demonstrating gentle yet effective multi-ink mixing. We believe this approach will broaden 3D printing applications, particularly for constructing functional structures in 3D bioprinting.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.