通过钒基催化剂上的预占锚定策略促进 C-Cl 键活化,实现氮氧化物和氯化芳烃的多污染物控制。

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
环境科学与技术 Pub Date : 2024-09-17 Epub Date: 2024-09-02 DOI:10.1021/acs.est.4c06220
Xing Yuan, Yu Wang, Xiao Zhu, Bin Zhou, Zijian Song, Zhen Chen, Yue Peng, Wenzhe Si, Junhua Li
{"title":"通过钒基催化剂上的预占锚定策略促进 C-Cl 键活化,实现氮氧化物和氯化芳烃的多污染物控制。","authors":"Xing Yuan, Yu Wang, Xiao Zhu, Bin Zhou, Zijian Song, Zhen Chen, Yue Peng, Wenzhe Si, Junhua Li","doi":"10.1021/acs.est.4c06220","DOIUrl":null,"url":null,"abstract":"<p><p>Regulating vanadia-based oxides has been widely utilized for fabricating effective difunctional catalysts for the simultaneous elimination of NO<sub>x</sub> and chlorobenzene (CB). However, the notorious accumulation of polychlorinated species and excessively strong NH<sub>3</sub> adsorption on the catalysts lead to the deterioration of multipollutant control (MPC) activity. Herein, protonated sulfate (-HSO<sub>4</sub>) supported on vanadium-titanium catalysts via a preoccupied anchoring strategy are designed to prevent polychlorinated species and alleviate NH<sub>3</sub> adsorption for the multipollutant control. The obtained catalysts with -HSO<sub>4</sub> modification achieve an excellent NO<sub>x</sub> and CB conversion with turnover frequency values of ∼ 3.63 and 17.7 times higher than those of the pristine, respectively. The protonated sulfate promotes the formation of polymeric vanadyl with a higher chemical state and d-band center of V. The modulated catalysts not only substantially alleviate the competitive adsorption of multipollutant via the \"V 3d-O 2p-S 3p\" network, but also distinctly strengthen the Brønsted acid sites. Besides, the introduced proton donor of the -HSO<sub>4</sub> connecting polymeric structure could markedly reduce the reaction barrier of breaking the C-Cl bond. This work paves an advanced way for low-loading vanadium SCR catalysts to achieve highly efficient NO<sub>x</sub> and CB oxidation at a low temperature.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting C-Cl Bond Activation via a Preoccupied Anchoring Strategy on Vanadia-Based Catalysts for Multi-Pollutant Control of NO<sub>x</sub> and Chlorinated Aromatics.\",\"authors\":\"Xing Yuan, Yu Wang, Xiao Zhu, Bin Zhou, Zijian Song, Zhen Chen, Yue Peng, Wenzhe Si, Junhua Li\",\"doi\":\"10.1021/acs.est.4c06220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regulating vanadia-based oxides has been widely utilized for fabricating effective difunctional catalysts for the simultaneous elimination of NO<sub>x</sub> and chlorobenzene (CB). However, the notorious accumulation of polychlorinated species and excessively strong NH<sub>3</sub> adsorption on the catalysts lead to the deterioration of multipollutant control (MPC) activity. Herein, protonated sulfate (-HSO<sub>4</sub>) supported on vanadium-titanium catalysts via a preoccupied anchoring strategy are designed to prevent polychlorinated species and alleviate NH<sub>3</sub> adsorption for the multipollutant control. The obtained catalysts with -HSO<sub>4</sub> modification achieve an excellent NO<sub>x</sub> and CB conversion with turnover frequency values of ∼ 3.63 and 17.7 times higher than those of the pristine, respectively. The protonated sulfate promotes the formation of polymeric vanadyl with a higher chemical state and d-band center of V. The modulated catalysts not only substantially alleviate the competitive adsorption of multipollutant via the \\\"V 3d-O 2p-S 3p\\\" network, but also distinctly strengthen the Brønsted acid sites. Besides, the introduced proton donor of the -HSO<sub>4</sub> connecting polymeric structure could markedly reduce the reaction barrier of breaking the C-Cl bond. This work paves an advanced way for low-loading vanadium SCR catalysts to achieve highly efficient NO<sub>x</sub> and CB oxidation at a low temperature.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c06220\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06220","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

调节性钒基氧化物已被广泛用于制造有效的双官能催化剂,以同时消除氮氧化物和氯苯(CB)。然而,催化剂上臭名昭著的多氯物种积累和过强的 NH3 吸附导致多污染物控制(MPC)活性下降。在此,我们设计了通过预占锚定策略在钒钛催化剂上支撑质子化硫酸盐(-HSO4),以防止多氯物种并减轻 NH3 吸附,从而实现多污染物控制。经 -HSO4 改性的催化剂实现了优异的氮氧化物和 CB 转化率,其转化频率值分别是原始催化剂的 3.63 倍和 17.7 倍。质子化的硫酸盐促进了具有更高化学态和 V 的 d 带中心的聚合钒烷的形成。调制后的催化剂不仅通过 "V 3d-O 2p-S 3p "网络大大缓解了多污染物的竞争吸附,而且明显增强了布氏酸位点。此外,连接聚合物结构的 -HSO4 所引入的质子供体可显著降低 C-Cl 键断裂的反应障碍。这项研究为低负载钒 SCR 催化剂在低温条件下实现高效氧化 NOx 和 CB 铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Promoting C-Cl Bond Activation via a Preoccupied Anchoring Strategy on Vanadia-Based Catalysts for Multi-Pollutant Control of NO<sub>x</sub> and Chlorinated Aromatics.

Promoting C-Cl Bond Activation via a Preoccupied Anchoring Strategy on Vanadia-Based Catalysts for Multi-Pollutant Control of NOx and Chlorinated Aromatics.

Regulating vanadia-based oxides has been widely utilized for fabricating effective difunctional catalysts for the simultaneous elimination of NOx and chlorobenzene (CB). However, the notorious accumulation of polychlorinated species and excessively strong NH3 adsorption on the catalysts lead to the deterioration of multipollutant control (MPC) activity. Herein, protonated sulfate (-HSO4) supported on vanadium-titanium catalysts via a preoccupied anchoring strategy are designed to prevent polychlorinated species and alleviate NH3 adsorption for the multipollutant control. The obtained catalysts with -HSO4 modification achieve an excellent NOx and CB conversion with turnover frequency values of ∼ 3.63 and 17.7 times higher than those of the pristine, respectively. The protonated sulfate promotes the formation of polymeric vanadyl with a higher chemical state and d-band center of V. The modulated catalysts not only substantially alleviate the competitive adsorption of multipollutant via the "V 3d-O 2p-S 3p" network, but also distinctly strengthen the Brønsted acid sites. Besides, the introduced proton donor of the -HSO4 connecting polymeric structure could markedly reduce the reaction barrier of breaking the C-Cl bond. This work paves an advanced way for low-loading vanadium SCR catalysts to achieve highly efficient NOx and CB oxidation at a low temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信