在足外翻纤维化细胞衍生模型中利用大分子拥挤的生物模拟效应

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomacromolecules Pub Date : 2024-10-14 Epub Date: 2024-08-30 DOI:10.1021/acs.biomac.4c00653
Martina Doubková, Jarmila Knitlová, David Vondrášek, Adam Eckhardt, Tomáš Novotný, Martin Ošt'ádal, Elena Filová, Lucie Bačáková
{"title":"在足外翻纤维化细胞衍生模型中利用大分子拥挤的生物模拟效应","authors":"Martina Doubková, Jarmila Knitlová, David Vondrášek, Adam Eckhardt, Tomáš Novotný, Martin Ošt'ádal, Elena Filová, Lucie Bačáková","doi":"10.1021/acs.biomac.4c00653","DOIUrl":null,"url":null,"abstract":"<p><p>Fibrotic changes in pediatric clubfoot provide an opportunity to improve corrective therapy and prevent relapses with targeted drugs. This study defines the parameters of clubfoot fibrosis and presents a unique analysis of a simple pseudo-3D <i>in vitro</i> model for disease-specific high-throughput drug screening experiments. The model combines clubfoot-derived fibroblasts with a biomimetic cultivation environment induced by the water-soluble polymers Ficoll and Polyvinylpyrrolidone, utilizing the principle of macromolecular crowding. We achieved higher conversion of soluble collagen into insoluble collagen, accelerated formation of the extracellular matrix layer and upregulated fibrosis-related genes in the mixed Ficoll environment. To test the model, we evaluated the effect of a potential antifibrotic drug, minoxidil, emphasizing collagen content and cross-linking. While the model amplified overall collagen deposition, minoxidil effectively blocked the expression of lysyl hydroxylases, which are responsible for the increased occurrence of specific collagen cross-linking in various fibrotic tissues. This limited the formation of collagen cross-link in both the model and control environments. Our findings provide a tool for expanding preclinical research for clubfoot and similar fibroproliferative conditions.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"6485-6502"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480992/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harnessing the Biomimetic Effect of Macromolecular Crowding in the Cell-Derived Model of Clubfoot Fibrosis.\",\"authors\":\"Martina Doubková, Jarmila Knitlová, David Vondrášek, Adam Eckhardt, Tomáš Novotný, Martin Ošt'ádal, Elena Filová, Lucie Bačáková\",\"doi\":\"10.1021/acs.biomac.4c00653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fibrotic changes in pediatric clubfoot provide an opportunity to improve corrective therapy and prevent relapses with targeted drugs. This study defines the parameters of clubfoot fibrosis and presents a unique analysis of a simple pseudo-3D <i>in vitro</i> model for disease-specific high-throughput drug screening experiments. The model combines clubfoot-derived fibroblasts with a biomimetic cultivation environment induced by the water-soluble polymers Ficoll and Polyvinylpyrrolidone, utilizing the principle of macromolecular crowding. We achieved higher conversion of soluble collagen into insoluble collagen, accelerated formation of the extracellular matrix layer and upregulated fibrosis-related genes in the mixed Ficoll environment. To test the model, we evaluated the effect of a potential antifibrotic drug, minoxidil, emphasizing collagen content and cross-linking. While the model amplified overall collagen deposition, minoxidil effectively blocked the expression of lysyl hydroxylases, which are responsible for the increased occurrence of specific collagen cross-linking in various fibrotic tissues. This limited the formation of collagen cross-link in both the model and control environments. Our findings provide a tool for expanding preclinical research for clubfoot and similar fibroproliferative conditions.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"6485-6502\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480992/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00653\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00653","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小儿足癣的纤维化变化为使用靶向药物改善矫正治疗和预防复发提供了机会。本研究定义了足癣纤维化的参数,并对用于疾病特异性高通量药物筛选实验的简单伪三维体外模型进行了独特的分析。该模型利用大分子排挤原理,将足外翻成纤维细胞与水溶性聚合物 Ficoll 和聚乙烯吡咯烷酮诱导的仿生培养环境相结合。在混合 Ficoll 环境中,我们实现了可溶性胶原向不溶性胶原的更高转化率,加速了细胞外基质层的形成,并上调了纤维化相关基因。为了测试该模型,我们评估了一种潜在的抗纤维化药物米诺地尔的效果,强调了胶原蛋白含量和交联。虽然该模型扩大了胶原蛋白的整体沉积,但米诺地尔有效阻止了赖氨酰羟化酶的表达,而赖氨酰羟化酶在各种纤维化组织中负责增加特定胶原蛋白交联的发生。这限制了模型和对照环境中胶原交联的形成。我们的研究结果为扩大足癣和类似纤维增生性疾病的临床前研究提供了一种工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing the Biomimetic Effect of Macromolecular Crowding in the Cell-Derived Model of Clubfoot Fibrosis.

Harnessing the Biomimetic Effect of Macromolecular Crowding in the Cell-Derived Model of Clubfoot Fibrosis.

Fibrotic changes in pediatric clubfoot provide an opportunity to improve corrective therapy and prevent relapses with targeted drugs. This study defines the parameters of clubfoot fibrosis and presents a unique analysis of a simple pseudo-3D in vitro model for disease-specific high-throughput drug screening experiments. The model combines clubfoot-derived fibroblasts with a biomimetic cultivation environment induced by the water-soluble polymers Ficoll and Polyvinylpyrrolidone, utilizing the principle of macromolecular crowding. We achieved higher conversion of soluble collagen into insoluble collagen, accelerated formation of the extracellular matrix layer and upregulated fibrosis-related genes in the mixed Ficoll environment. To test the model, we evaluated the effect of a potential antifibrotic drug, minoxidil, emphasizing collagen content and cross-linking. While the model amplified overall collagen deposition, minoxidil effectively blocked the expression of lysyl hydroxylases, which are responsible for the increased occurrence of specific collagen cross-linking in various fibrotic tissues. This limited the formation of collagen cross-link in both the model and control environments. Our findings provide a tool for expanding preclinical research for clubfoot and similar fibroproliferative conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信