Jiahao Zhang, Anna Zhang, Siyu Liu, Zhipeng Dong, Junkai Zhao, Yufeng Sun, Qiuxian Wei, Dan Wang, Saifei Wang, Anping Yu, Zhong Rui Li, Ran Yan, Yue Wang
{"title":"纳米级含卟啉共价有机聚合物在通过谷胱甘肽耗竭对肿瘤细胞进行光动力治疗时可增强铁突变。","authors":"Jiahao Zhang, Anna Zhang, Siyu Liu, Zhipeng Dong, Junkai Zhao, Yufeng Sun, Qiuxian Wei, Dan Wang, Saifei Wang, Anping Yu, Zhong Rui Li, Ran Yan, Yue Wang","doi":"10.1021/acs.bioconjchem.4c00355","DOIUrl":null,"url":null,"abstract":"<p><p>A porphyrin-containing nanoscale covalent organic polymer (COP) was fabricated from 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) and cystamine via an acylation reaction. On the one hand, TCPP can induce tumor cell death by laser irradiation. Due to the presence of disulfide bonds of cystamine which can react with glutathione, it exhibits depletion of glutathione and accumulation of peroxides in tumor cells. Ultimately by the hyaluronic acid to encapsulate the COP to get S-COP@HA, the nanoparticle with a size of 168.6 nm also exhibits good tumor accumulation and biosafety. Significant inhibition of tumor cell growth was observed after two consecutive doses of S-COP@HA at relatively low laser densities. This combination therapy was proved to reduce the level of reduced glutathione in tumor cells, where ferroptosis occurs after photodynamic treatment. Overall, this study presents a potent, good therapeutic option for the effective enhancement of photodynamic therapy by glutathione depletion.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1450-1458"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanosized Porphyrin-Containing Covalent Organic Polymer to Enhance Ferroptosis in Photodynamic Treatment of Tumor Cells via Glutathione Depletion.\",\"authors\":\"Jiahao Zhang, Anna Zhang, Siyu Liu, Zhipeng Dong, Junkai Zhao, Yufeng Sun, Qiuxian Wei, Dan Wang, Saifei Wang, Anping Yu, Zhong Rui Li, Ran Yan, Yue Wang\",\"doi\":\"10.1021/acs.bioconjchem.4c00355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A porphyrin-containing nanoscale covalent organic polymer (COP) was fabricated from 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) and cystamine via an acylation reaction. On the one hand, TCPP can induce tumor cell death by laser irradiation. Due to the presence of disulfide bonds of cystamine which can react with glutathione, it exhibits depletion of glutathione and accumulation of peroxides in tumor cells. Ultimately by the hyaluronic acid to encapsulate the COP to get S-COP@HA, the nanoparticle with a size of 168.6 nm also exhibits good tumor accumulation and biosafety. Significant inhibition of tumor cell growth was observed after two consecutive doses of S-COP@HA at relatively low laser densities. This combination therapy was proved to reduce the level of reduced glutathione in tumor cells, where ferroptosis occurs after photodynamic treatment. Overall, this study presents a potent, good therapeutic option for the effective enhancement of photodynamic therapy by glutathione depletion.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry Bioconjugate\",\"volume\":\" \",\"pages\":\"1450-1458\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry Bioconjugate\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.4c00355\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00355","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Nanosized Porphyrin-Containing Covalent Organic Polymer to Enhance Ferroptosis in Photodynamic Treatment of Tumor Cells via Glutathione Depletion.
A porphyrin-containing nanoscale covalent organic polymer (COP) was fabricated from 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) and cystamine via an acylation reaction. On the one hand, TCPP can induce tumor cell death by laser irradiation. Due to the presence of disulfide bonds of cystamine which can react with glutathione, it exhibits depletion of glutathione and accumulation of peroxides in tumor cells. Ultimately by the hyaluronic acid to encapsulate the COP to get S-COP@HA, the nanoparticle with a size of 168.6 nm also exhibits good tumor accumulation and biosafety. Significant inhibition of tumor cell growth was observed after two consecutive doses of S-COP@HA at relatively low laser densities. This combination therapy was proved to reduce the level of reduced glutathione in tumor cells, where ferroptosis occurs after photodynamic treatment. Overall, this study presents a potent, good therapeutic option for the effective enhancement of photodynamic therapy by glutathione depletion.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.