Jane V. Carrick, Furu Mienis, Erik E. Cordes, Amanda W.J. Demopoulos, Andrew J. Davies
{"title":"湾流入侵和深流上升流驱动冷水珊瑚礁内温度和食物供应的动态模式","authors":"Jane V. Carrick, Furu Mienis, Erik E. Cordes, Amanda W.J. Demopoulos, Andrew J. Davies","doi":"10.1002/lno.12659","DOIUrl":null,"url":null,"abstract":"<p>One of the most significant features of the Northwest Atlantic, the Gulf Stream influences high magnitude environmental fluctuations in deep habitats across the South Atlantic Bight. Amid this variability, the Blake Plateau harbors extensive reefs formed by cold-water corals that were previously assumed to rely on narrow ranges of temperature, currents, and particulate supply. A benthic lander collected near-bed conditions at the Richardson Reef Complex, a cold-water reef dominated by the scleractinian <i>Desmophyllum pertusum</i> at 830 m within the path of the Gulf Stream. Specific behavior of the Gulf Stream resulted in recurring environmental patterns at depth. During offshore meanders, deep stream components intruded onto the reef and caused rapid (3.74°C per hour) temperature increases up to 10.8°C (> 5°C above the site mean) and increased chlorophyll. Within 2 d of peak temperatures, intrusions were replaced by strong, turbid upwelling currents that rapidly cooled the site to temperature minima (4.13°C). While considerable environmental variability from the Gulf Stream may otherwise implicate a thermally stressful setting for corals, high-temperature events were likely mitigated by their short duration (< 37.4 h) and physical coupling with enhanced organic material. This hypothesis was supported by high-density clustering of <i>D. pertusum</i> occurrences within 50 km around the Gulf Stream's position along the South Atlantic Bight. This suggests that cold-water corals experiencing environmental variability can be sustained by relationships between food supply, temperature, and currents that vary in strength along stochastic time scales, shedding further light on the niche of cold-water corals.</p>","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"69 9","pages":"2193-2210"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gulf Stream intrusion and deep current upwelling drive dynamic patterns of temperature and food supply within cold-water coral reefs\",\"authors\":\"Jane V. Carrick, Furu Mienis, Erik E. Cordes, Amanda W.J. Demopoulos, Andrew J. Davies\",\"doi\":\"10.1002/lno.12659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the most significant features of the Northwest Atlantic, the Gulf Stream influences high magnitude environmental fluctuations in deep habitats across the South Atlantic Bight. Amid this variability, the Blake Plateau harbors extensive reefs formed by cold-water corals that were previously assumed to rely on narrow ranges of temperature, currents, and particulate supply. A benthic lander collected near-bed conditions at the Richardson Reef Complex, a cold-water reef dominated by the scleractinian <i>Desmophyllum pertusum</i> at 830 m within the path of the Gulf Stream. Specific behavior of the Gulf Stream resulted in recurring environmental patterns at depth. During offshore meanders, deep stream components intruded onto the reef and caused rapid (3.74°C per hour) temperature increases up to 10.8°C (> 5°C above the site mean) and increased chlorophyll. Within 2 d of peak temperatures, intrusions were replaced by strong, turbid upwelling currents that rapidly cooled the site to temperature minima (4.13°C). While considerable environmental variability from the Gulf Stream may otherwise implicate a thermally stressful setting for corals, high-temperature events were likely mitigated by their short duration (< 37.4 h) and physical coupling with enhanced organic material. This hypothesis was supported by high-density clustering of <i>D. pertusum</i> occurrences within 50 km around the Gulf Stream's position along the South Atlantic Bight. This suggests that cold-water corals experiencing environmental variability can be sustained by relationships between food supply, temperature, and currents that vary in strength along stochastic time scales, shedding further light on the niche of cold-water corals.</p>\",\"PeriodicalId\":18143,\"journal\":{\"name\":\"Limnology and Oceanography\",\"volume\":\"69 9\",\"pages\":\"2193-2210\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lno.12659\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lno.12659","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Gulf Stream intrusion and deep current upwelling drive dynamic patterns of temperature and food supply within cold-water coral reefs
One of the most significant features of the Northwest Atlantic, the Gulf Stream influences high magnitude environmental fluctuations in deep habitats across the South Atlantic Bight. Amid this variability, the Blake Plateau harbors extensive reefs formed by cold-water corals that were previously assumed to rely on narrow ranges of temperature, currents, and particulate supply. A benthic lander collected near-bed conditions at the Richardson Reef Complex, a cold-water reef dominated by the scleractinian Desmophyllum pertusum at 830 m within the path of the Gulf Stream. Specific behavior of the Gulf Stream resulted in recurring environmental patterns at depth. During offshore meanders, deep stream components intruded onto the reef and caused rapid (3.74°C per hour) temperature increases up to 10.8°C (> 5°C above the site mean) and increased chlorophyll. Within 2 d of peak temperatures, intrusions were replaced by strong, turbid upwelling currents that rapidly cooled the site to temperature minima (4.13°C). While considerable environmental variability from the Gulf Stream may otherwise implicate a thermally stressful setting for corals, high-temperature events were likely mitigated by their short duration (< 37.4 h) and physical coupling with enhanced organic material. This hypothesis was supported by high-density clustering of D. pertusum occurrences within 50 km around the Gulf Stream's position along the South Atlantic Bight. This suggests that cold-water corals experiencing environmental variability can be sustained by relationships between food supply, temperature, and currents that vary in strength along stochastic time scales, shedding further light on the niche of cold-water corals.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.