{"title":"对完全分布式集水区水质模型进行数据有效校准","authors":"Salman Ghaffar, Xiangqian Zhou, Seifeddine Jomaa, Xiaoqiang Yang, Günter Meon, Michael Rode","doi":"10.1029/2023wr036527","DOIUrl":null,"url":null,"abstract":"Distributed hydrological water quality models are increasingly being used to manage natural resources at the catchment scale but there are no calibration guidelines for selecting the most effective gauging stations. In this study, we investigated the influence of calibration schemes on the spatiotemporal performance of a fully distributed process-based hydrological water quality model (mHM-Nitrate) for discharge and nitrate simulations at the Bode catchment in central Germany. We used a single- and two multi-site calibration schemes where the two multi-site schemes varied in number of gauging stations but each subcatchment represented different dominant land uses of the catchment. To extract a set of behavioral parameters for each calibration scheme, we chose a sequential multi-criteria method with 300,000 iterations. For discharge (<i>Q</i>), model performance was similar among the three schemes (NSE varied from 0.88 to 0.92). However, for nitrate concentration (<span data-altimg=\"/cms/asset/734e7abb-e1a7-4c0b-9570-fe20e637aab7/wrcr27442-math-0086.png\"></span><mjx-container ctxtmenu_counter=\"85\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27442-math-0086.png\"><mjx-semantics><mjx-mrow><mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"italic upper N upper O 3 Superscript italic minus\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.277em; margin-left: 0px;\"><mjx-mo data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" size=\"s\"><mjx-c></mjx-c></mjx-mo><mjx-spacer style=\"margin-top: 0.18em;\"></mjx-spacer><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27442:wrcr27442-math-0086\" display=\"inline\" location=\"graphic/wrcr27442-math-0086.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msubsup data-semantic-=\"\" data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic-role=\"unknown\" data-semantic-speech=\"italic upper N upper O 3 Superscript italic minus\" data-semantic-type=\"subsup\"><mi data-semantic-=\"\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" mathvariant=\"italic\">NO</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn><mo data-semantic-=\"\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" mathvariant=\"italic\">−</mo></msubsup></mrow>${\\mathit{NO}}_{3}^{\\mathit{-}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), the multi-site schemes performed better than the single site scheme. This improvement may be attributed to that multi-site schemes incorporated a broader range of data, including low <i>Q</i> and <span data-altimg=\"/cms/asset/3d4410c5-fe51-47db-8020-8bb508d31f4a/wrcr27442-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"86\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27442-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"italic upper N upper O 3 Superscript italic minus\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.277em; margin-left: 0px;\"><mjx-mo data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" size=\"s\"><mjx-c></mjx-c></mjx-mo><mjx-spacer style=\"margin-top: 0.18em;\"></mjx-spacer><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27442:wrcr27442-math-0001\" display=\"inline\" location=\"graphic/wrcr27442-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msubsup data-semantic-=\"\" data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic-role=\"unknown\" data-semantic-speech=\"italic upper N upper O 3 Superscript italic minus\" data-semantic-type=\"subsup\"><mi data-semantic-=\"\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" mathvariant=\"italic\">NO</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn><mo data-semantic-=\"\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" mathvariant=\"italic\">−</mo></msubsup></mrow>${\\mathit{NO}}_{3}^{\\mathit{-}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values, thus provided a better representation of within-catchment diversity. Conversely, adding more gauging stations in the multi-site approaches did not lead to further improvements in catchment representation but showed wider 95% uncertainty boundaries. Thus, adding observations that contained similar information on catchment characteristics did not seem to improve model performance; however, it increased uncertainty. These results highlight the importance of strategically selecting gauging stations that reflect the full range of catchment heterogeneity rather than seeking to maximize station number, to optimize parameter calibration.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a Data-Effective Calibration of a Fully Distributed Catchment Water Quality Model\",\"authors\":\"Salman Ghaffar, Xiangqian Zhou, Seifeddine Jomaa, Xiaoqiang Yang, Günter Meon, Michael Rode\",\"doi\":\"10.1029/2023wr036527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed hydrological water quality models are increasingly being used to manage natural resources at the catchment scale but there are no calibration guidelines for selecting the most effective gauging stations. In this study, we investigated the influence of calibration schemes on the spatiotemporal performance of a fully distributed process-based hydrological water quality model (mHM-Nitrate) for discharge and nitrate simulations at the Bode catchment in central Germany. We used a single- and two multi-site calibration schemes where the two multi-site schemes varied in number of gauging stations but each subcatchment represented different dominant land uses of the catchment. To extract a set of behavioral parameters for each calibration scheme, we chose a sequential multi-criteria method with 300,000 iterations. For discharge (<i>Q</i>), model performance was similar among the three schemes (NSE varied from 0.88 to 0.92). However, for nitrate concentration (<span data-altimg=\\\"/cms/asset/734e7abb-e1a7-4c0b-9570-fe20e637aab7/wrcr27442-math-0086.png\\\"></span><mjx-container ctxtmenu_counter=\\\"85\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27442-math-0086.png\\\"><mjx-semantics><mjx-mrow><mjx-msubsup data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"italic upper N upper O 3 Superscript italic minus\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.277em; margin-left: 0px;\\\"><mjx-mo data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mo><mjx-spacer style=\\\"margin-top: 0.18em;\\\"></mjx-spacer><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27442:wrcr27442-math-0086\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27442-math-0086.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msubsup data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"italic upper N upper O 3 Superscript italic minus\\\" data-semantic-type=\\\"subsup\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"italic\\\">NO</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">3</mn><mo data-semantic-=\\\"\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" mathvariant=\\\"italic\\\">−</mo></msubsup></mrow>${\\\\mathit{NO}}_{3}^{\\\\mathit{-}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), the multi-site schemes performed better than the single site scheme. This improvement may be attributed to that multi-site schemes incorporated a broader range of data, including low <i>Q</i> and <span data-altimg=\\\"/cms/asset/3d4410c5-fe51-47db-8020-8bb508d31f4a/wrcr27442-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"86\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27442-math-0001.png\\\"><mjx-semantics><mjx-mrow><mjx-msubsup data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"italic upper N upper O 3 Superscript italic minus\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.277em; margin-left: 0px;\\\"><mjx-mo data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mo><mjx-spacer style=\\\"margin-top: 0.18em;\\\"></mjx-spacer><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27442:wrcr27442-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27442-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msubsup data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"italic upper N upper O 3 Superscript italic minus\\\" data-semantic-type=\\\"subsup\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"italic\\\">NO</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">3</mn><mo data-semantic-=\\\"\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" mathvariant=\\\"italic\\\">−</mo></msubsup></mrow>${\\\\mathit{NO}}_{3}^{\\\\mathit{-}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values, thus provided a better representation of within-catchment diversity. Conversely, adding more gauging stations in the multi-site approaches did not lead to further improvements in catchment representation but showed wider 95% uncertainty boundaries. Thus, adding observations that contained similar information on catchment characteristics did not seem to improve model performance; however, it increased uncertainty. These results highlight the importance of strategically selecting gauging stations that reflect the full range of catchment heterogeneity rather than seeking to maximize station number, to optimize parameter calibration.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr036527\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036527","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Toward a Data-Effective Calibration of a Fully Distributed Catchment Water Quality Model
Distributed hydrological water quality models are increasingly being used to manage natural resources at the catchment scale but there are no calibration guidelines for selecting the most effective gauging stations. In this study, we investigated the influence of calibration schemes on the spatiotemporal performance of a fully distributed process-based hydrological water quality model (mHM-Nitrate) for discharge and nitrate simulations at the Bode catchment in central Germany. We used a single- and two multi-site calibration schemes where the two multi-site schemes varied in number of gauging stations but each subcatchment represented different dominant land uses of the catchment. To extract a set of behavioral parameters for each calibration scheme, we chose a sequential multi-criteria method with 300,000 iterations. For discharge (Q), model performance was similar among the three schemes (NSE varied from 0.88 to 0.92). However, for nitrate concentration (), the multi-site schemes performed better than the single site scheme. This improvement may be attributed to that multi-site schemes incorporated a broader range of data, including low Q and values, thus provided a better representation of within-catchment diversity. Conversely, adding more gauging stations in the multi-site approaches did not lead to further improvements in catchment representation but showed wider 95% uncertainty boundaries. Thus, adding observations that contained similar information on catchment characteristics did not seem to improve model performance; however, it increased uncertainty. These results highlight the importance of strategically selecting gauging stations that reflect the full range of catchment heterogeneity rather than seeking to maximize station number, to optimize parameter calibration.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.