对完全分布式集水区水质模型进行数据有效校准

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Salman Ghaffar, Xiangqian Zhou, Seifeddine Jomaa, Xiaoqiang Yang, Günter Meon, Michael Rode
{"title":"对完全分布式集水区水质模型进行数据有效校准","authors":"Salman Ghaffar, Xiangqian Zhou, Seifeddine Jomaa, Xiaoqiang Yang, Günter Meon, Michael Rode","doi":"10.1029/2023wr036527","DOIUrl":null,"url":null,"abstract":"Distributed hydrological water quality models are increasingly being used to manage natural resources at the catchment scale but there are no calibration guidelines for selecting the most effective gauging stations. In this study, we investigated the influence of calibration schemes on the spatiotemporal performance of a fully distributed process-based hydrological water quality model (mHM-Nitrate) for discharge and nitrate simulations at the Bode catchment in central Germany. We used a single- and two multi-site calibration schemes where the two multi-site schemes varied in number of gauging stations but each subcatchment represented different dominant land uses of the catchment. To extract a set of behavioral parameters for each calibration scheme, we chose a sequential multi-criteria method with 300,000 iterations. For discharge (<i>Q</i>), model performance was similar among the three schemes (NSE varied from 0.88 to 0.92). However, for nitrate concentration (<span data-altimg=\"/cms/asset/734e7abb-e1a7-4c0b-9570-fe20e637aab7/wrcr27442-math-0086.png\"></span><mjx-container ctxtmenu_counter=\"85\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27442-math-0086.png\"><mjx-semantics><mjx-mrow><mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"italic upper N upper O 3 Superscript italic minus\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.277em; margin-left: 0px;\"><mjx-mo data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" size=\"s\"><mjx-c></mjx-c></mjx-mo><mjx-spacer style=\"margin-top: 0.18em;\"></mjx-spacer><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27442:wrcr27442-math-0086\" display=\"inline\" location=\"graphic/wrcr27442-math-0086.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msubsup data-semantic-=\"\" data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic-role=\"unknown\" data-semantic-speech=\"italic upper N upper O 3 Superscript italic minus\" data-semantic-type=\"subsup\"><mi data-semantic-=\"\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" mathvariant=\"italic\">NO</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn><mo data-semantic-=\"\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" mathvariant=\"italic\">−</mo></msubsup></mrow>${\\mathit{NO}}_{3}^{\\mathit{-}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), the multi-site schemes performed better than the single site scheme. This improvement may be attributed to that multi-site schemes incorporated a broader range of data, including low <i>Q</i> and <span data-altimg=\"/cms/asset/3d4410c5-fe51-47db-8020-8bb508d31f4a/wrcr27442-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"86\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27442-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"italic upper N upper O 3 Superscript italic minus\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.277em; margin-left: 0px;\"><mjx-mo data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" size=\"s\"><mjx-c></mjx-c></mjx-mo><mjx-spacer style=\"margin-top: 0.18em;\"></mjx-spacer><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27442:wrcr27442-math-0001\" display=\"inline\" location=\"graphic/wrcr27442-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msubsup data-semantic-=\"\" data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic-role=\"unknown\" data-semantic-speech=\"italic upper N upper O 3 Superscript italic minus\" data-semantic-type=\"subsup\"><mi data-semantic-=\"\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" mathvariant=\"italic\">NO</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn><mo data-semantic-=\"\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" mathvariant=\"italic\">−</mo></msubsup></mrow>${\\mathit{NO}}_{3}^{\\mathit{-}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values, thus provided a better representation of within-catchment diversity. Conversely, adding more gauging stations in the multi-site approaches did not lead to further improvements in catchment representation but showed wider 95% uncertainty boundaries. Thus, adding observations that contained similar information on catchment characteristics did not seem to improve model performance; however, it increased uncertainty. These results highlight the importance of strategically selecting gauging stations that reflect the full range of catchment heterogeneity rather than seeking to maximize station number, to optimize parameter calibration.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a Data-Effective Calibration of a Fully Distributed Catchment Water Quality Model\",\"authors\":\"Salman Ghaffar, Xiangqian Zhou, Seifeddine Jomaa, Xiaoqiang Yang, Günter Meon, Michael Rode\",\"doi\":\"10.1029/2023wr036527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed hydrological water quality models are increasingly being used to manage natural resources at the catchment scale but there are no calibration guidelines for selecting the most effective gauging stations. In this study, we investigated the influence of calibration schemes on the spatiotemporal performance of a fully distributed process-based hydrological water quality model (mHM-Nitrate) for discharge and nitrate simulations at the Bode catchment in central Germany. We used a single- and two multi-site calibration schemes where the two multi-site schemes varied in number of gauging stations but each subcatchment represented different dominant land uses of the catchment. To extract a set of behavioral parameters for each calibration scheme, we chose a sequential multi-criteria method with 300,000 iterations. For discharge (<i>Q</i>), model performance was similar among the three schemes (NSE varied from 0.88 to 0.92). However, for nitrate concentration (<span data-altimg=\\\"/cms/asset/734e7abb-e1a7-4c0b-9570-fe20e637aab7/wrcr27442-math-0086.png\\\"></span><mjx-container ctxtmenu_counter=\\\"85\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27442-math-0086.png\\\"><mjx-semantics><mjx-mrow><mjx-msubsup data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"italic upper N upper O 3 Superscript italic minus\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.277em; margin-left: 0px;\\\"><mjx-mo data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mo><mjx-spacer style=\\\"margin-top: 0.18em;\\\"></mjx-spacer><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27442:wrcr27442-math-0086\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27442-math-0086.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msubsup data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"italic upper N upper O 3 Superscript italic minus\\\" data-semantic-type=\\\"subsup\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"italic\\\">NO</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">3</mn><mo data-semantic-=\\\"\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" mathvariant=\\\"italic\\\">−</mo></msubsup></mrow>${\\\\mathit{NO}}_{3}^{\\\\mathit{-}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), the multi-site schemes performed better than the single site scheme. This improvement may be attributed to that multi-site schemes incorporated a broader range of data, including low <i>Q</i> and <span data-altimg=\\\"/cms/asset/3d4410c5-fe51-47db-8020-8bb508d31f4a/wrcr27442-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"86\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27442-math-0001.png\\\"><mjx-semantics><mjx-mrow><mjx-msubsup data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"italic upper N upper O 3 Superscript italic minus\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.277em; margin-left: 0px;\\\"><mjx-mo data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mo><mjx-spacer style=\\\"margin-top: 0.18em;\\\"></mjx-spacer><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27442:wrcr27442-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27442-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msubsup data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"italic upper N upper O 3 Superscript italic minus\\\" data-semantic-type=\\\"subsup\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"italic\\\">NO</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">3</mn><mo data-semantic-=\\\"\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" mathvariant=\\\"italic\\\">−</mo></msubsup></mrow>${\\\\mathit{NO}}_{3}^{\\\\mathit{-}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values, thus provided a better representation of within-catchment diversity. Conversely, adding more gauging stations in the multi-site approaches did not lead to further improvements in catchment representation but showed wider 95% uncertainty boundaries. Thus, adding observations that contained similar information on catchment characteristics did not seem to improve model performance; however, it increased uncertainty. These results highlight the importance of strategically selecting gauging stations that reflect the full range of catchment heterogeneity rather than seeking to maximize station number, to optimize parameter calibration.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr036527\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036527","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

分布式水文水质模型正越来越多地用于流域范围内的自然资源管理,但目前还没有选择最有效测站的校准指南。在这项研究中,我们研究了校准方案对基于过程的全分布式水文水质模型(mHM-Nitrate)时空性能的影响,该模型用于德国中部博德流域的排放和硝酸盐模拟。我们使用了一个单站点和两个多站点校准方案,其中两个多站点方案的测站数量各不相同,但每个子流域都代表了流域内不同的主要土地用途。为了提取每个校准方案的行为参数集,我们选择了一种迭代 30 万次的顺序多标准方法。在排水量(Q)方面,三种方案的模型性能相似(NSE 从 0.88 到 0.92 不等)。然而,在硝酸盐浓度(NO3-${\mathit{NO}}_{3}^{\mathit{-}}$)方面,多站点方案的性能优于单站点方案。这种改进可能是由于多站点方案纳入了范围更广的数据,包括低 Q 值和 NO3-${\mathit{NO}}_{3}^{\mathit{-}}$ 值,从而更好地反映了流域内的多样性。相反,在多站点方法中增加更多的测站并没有进一步改善流域代表性,而是显示出更宽的 95% 不确定性边界。因此,增加包含类似集水区特征信息的观测数据似乎并没有提高模型性能,反而增加了不确定性。这些结果凸显了战略性地选择能全面反映集水区异质性的测站,而不是追求测站数量的最大化,以优化参数校准的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward a Data-Effective Calibration of a Fully Distributed Catchment Water Quality Model
Distributed hydrological water quality models are increasingly being used to manage natural resources at the catchment scale but there are no calibration guidelines for selecting the most effective gauging stations. In this study, we investigated the influence of calibration schemes on the spatiotemporal performance of a fully distributed process-based hydrological water quality model (mHM-Nitrate) for discharge and nitrate simulations at the Bode catchment in central Germany. We used a single- and two multi-site calibration schemes where the two multi-site schemes varied in number of gauging stations but each subcatchment represented different dominant land uses of the catchment. To extract a set of behavioral parameters for each calibration scheme, we chose a sequential multi-criteria method with 300,000 iterations. For discharge (Q), model performance was similar among the three schemes (NSE varied from 0.88 to 0.92). However, for nitrate concentration (NO3${\mathit{NO}}_{3}^{\mathit{-}}$), the multi-site schemes performed better than the single site scheme. This improvement may be attributed to that multi-site schemes incorporated a broader range of data, including low Q and NO3${\mathit{NO}}_{3}^{\mathit{-}}$ values, thus provided a better representation of within-catchment diversity. Conversely, adding more gauging stations in the multi-site approaches did not lead to further improvements in catchment representation but showed wider 95% uncertainty boundaries. Thus, adding observations that contained similar information on catchment characteristics did not seem to improve model performance; however, it increased uncertainty. These results highlight the importance of strategically selecting gauging stations that reflect the full range of catchment heterogeneity rather than seeking to maximize station number, to optimize parameter calibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信