整合 DDPM 和 ILUES,同时识别污染物源参数和非高斯通道化水力传导场

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Xun Zhang, Simin Jiang, Na Zheng, Xuemin Xia, Zhi Li, Ruicheng Zhang, Jiangjiang Zhang, Xinshu Wang
{"title":"整合 DDPM 和 ILUES,同时识别污染物源参数和非高斯通道化水力传导场","authors":"Xun Zhang, Simin Jiang, Na Zheng, Xuemin Xia, Zhi Li, Ruicheng Zhang, Jiangjiang Zhang, Xinshu Wang","doi":"10.1029/2023wr036893","DOIUrl":null,"url":null,"abstract":"Identifying highly channelized hydraulic conductivity fields and contaminant source parameters remains a challenging task, primarily due to the non-Gaussian nature and high dimensionality of the parameter space, as well as the computational burden caused by repeatedly running forward numerical models. This study proposes a novel deep learning parameterization method called AEdiffusion, which combines Diffusion Denoising Probabilistic Model (DDPM) with Variational Autoencoder (VAE) for dimensionality reduction. The method employs a generator-refiner strategy to generate high-dimensional aquifer properties from low-dimensional latent representations. The inversion modeling was performed on a synthetic non-Gaussian hydraulic conductivity field with line-source contamination using the Iterative Local Updating Ensemble Smoother (ILUES) algorithm. The results demonstrate that the AEdiffusion-ILUES framework can accurately identify model parameters. To reduce the computational burden, an AR-Net-WL (ARNW) surrogate model was introduced, resulting in an efficient inversion framework (AEdiffusion-ILUES-ARNW) with similar prediction accuracy and predictive uncertainty estimation as the AEdiffusion-ILUES but at a lower computational cost.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of DDPM and ILUES for Simultaneous Identification of Contaminant Source Parameters and Non-Gaussian Channelized Hydraulic Conductivity Field\",\"authors\":\"Xun Zhang, Simin Jiang, Na Zheng, Xuemin Xia, Zhi Li, Ruicheng Zhang, Jiangjiang Zhang, Xinshu Wang\",\"doi\":\"10.1029/2023wr036893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying highly channelized hydraulic conductivity fields and contaminant source parameters remains a challenging task, primarily due to the non-Gaussian nature and high dimensionality of the parameter space, as well as the computational burden caused by repeatedly running forward numerical models. This study proposes a novel deep learning parameterization method called AEdiffusion, which combines Diffusion Denoising Probabilistic Model (DDPM) with Variational Autoencoder (VAE) for dimensionality reduction. The method employs a generator-refiner strategy to generate high-dimensional aquifer properties from low-dimensional latent representations. The inversion modeling was performed on a synthetic non-Gaussian hydraulic conductivity field with line-source contamination using the Iterative Local Updating Ensemble Smoother (ILUES) algorithm. The results demonstrate that the AEdiffusion-ILUES framework can accurately identify model parameters. To reduce the computational burden, an AR-Net-WL (ARNW) surrogate model was introduced, resulting in an efficient inversion framework (AEdiffusion-ILUES-ARNW) with similar prediction accuracy and predictive uncertainty estimation as the AEdiffusion-ILUES but at a lower computational cost.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr036893\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036893","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

识别高度渠道化的水力传导场和污染源参数仍然是一项具有挑战性的任务,这主要是由于参数空间的非高斯性和高维性,以及反复运行前向数值模型所造成的计算负担。本研究提出了一种名为 AEdiffusion 的新型深度学习参数化方法,该方法将扩散去噪概率模型(DDPM)与变异自动编码器(VAE)相结合,以降低维度。该方法采用生成器-反演器策略,从低维潜在表征生成高维含水层属性。使用迭代局部更新集合平滑(ILUES)算法,对具有线源污染的合成非高斯水力传导场进行了反演建模。结果表明,AEdiffusion-ILUES 框架能够准确识别模型参数。为了减轻计算负担,引入了 AR-Net-WL (ARNW) 代理模型,从而产生了一个高效反演框架(AEdiffusion-ILUES-ARNW),其预测精度和预测不确定性估计与 AEdiffusion-ILUES 相似,但计算成本更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of DDPM and ILUES for Simultaneous Identification of Contaminant Source Parameters and Non-Gaussian Channelized Hydraulic Conductivity Field
Identifying highly channelized hydraulic conductivity fields and contaminant source parameters remains a challenging task, primarily due to the non-Gaussian nature and high dimensionality of the parameter space, as well as the computational burden caused by repeatedly running forward numerical models. This study proposes a novel deep learning parameterization method called AEdiffusion, which combines Diffusion Denoising Probabilistic Model (DDPM) with Variational Autoencoder (VAE) for dimensionality reduction. The method employs a generator-refiner strategy to generate high-dimensional aquifer properties from low-dimensional latent representations. The inversion modeling was performed on a synthetic non-Gaussian hydraulic conductivity field with line-source contamination using the Iterative Local Updating Ensemble Smoother (ILUES) algorithm. The results demonstrate that the AEdiffusion-ILUES framework can accurately identify model parameters. To reduce the computational burden, an AR-Net-WL (ARNW) surrogate model was introduced, resulting in an efficient inversion framework (AEdiffusion-ILUES-ARNW) with similar prediction accuracy and predictive uncertainty estimation as the AEdiffusion-ILUES but at a lower computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信