Kendra A. Ireland, Chase M. Kayrouz, Marissa L. Abbott, Mohammad R. Seyedsayamdost, Katherine M. Davis
{"title":"亚砜合成酶EgtB-IV(麦角硫因生物合成同源物卵硫醇合成酶OvoA)趋同进化的结构见解","authors":"Kendra A. Ireland, Chase M. Kayrouz, Marissa L. Abbott, Mohammad R. Seyedsayamdost, Katherine M. Davis","doi":"10.1016/j.str.2024.08.006","DOIUrl":null,"url":null,"abstract":"<p>Non-heme iron-dependent sulfoxide/selenoxide synthases (NHISS) constitute a unique metalloenzyme class capable of installing a C–S/Se bond onto histidine to generate thio/selenoimidazole antioxidants, such as ergothioneine and ovothiol. These natural products are increasingly recognized for their health benefits. Among associated ergothioneine-biosynthetic enzymes, type IV EgtBs stand out, as they exhibit low sequence similarity with other EgtB subfamilies due to their recent divergence from the ovothiol-biosynthetic enzyme OvoA. Herein, we present crystal structures of two representative EgtB-IV enzymes, offering insights into the basis for this evolutionary convergence and enhancing our understanding of NHISS active site organization more broadly. The ability to interpret how key residues modulate substrate specificity and regioselectivity has implications for downstream identification of divergent reactivity within the NHISS family. To this end, we identify a previously unclassified clade of OvoA-like enzymes with a seemingly hybrid set of characteristics, suggesting they may represent an evolutionary intermediate between OvoA and EgtB-IV.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural insights into the convergent evolution of sulfoxide synthase EgtB-IV, an ergothioneine-biosynthetic homolog of ovothiol synthase OvoA\",\"authors\":\"Kendra A. Ireland, Chase M. Kayrouz, Marissa L. Abbott, Mohammad R. Seyedsayamdost, Katherine M. Davis\",\"doi\":\"10.1016/j.str.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-heme iron-dependent sulfoxide/selenoxide synthases (NHISS) constitute a unique metalloenzyme class capable of installing a C–S/Se bond onto histidine to generate thio/selenoimidazole antioxidants, such as ergothioneine and ovothiol. These natural products are increasingly recognized for their health benefits. Among associated ergothioneine-biosynthetic enzymes, type IV EgtBs stand out, as they exhibit low sequence similarity with other EgtB subfamilies due to their recent divergence from the ovothiol-biosynthetic enzyme OvoA. Herein, we present crystal structures of two representative EgtB-IV enzymes, offering insights into the basis for this evolutionary convergence and enhancing our understanding of NHISS active site organization more broadly. The ability to interpret how key residues modulate substrate specificity and regioselectivity has implications for downstream identification of divergent reactivity within the NHISS family. To this end, we identify a previously unclassified clade of OvoA-like enzymes with a seemingly hybrid set of characteristics, suggesting they may represent an evolutionary intermediate between OvoA and EgtB-IV.</p>\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.08.006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.08.006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural insights into the convergent evolution of sulfoxide synthase EgtB-IV, an ergothioneine-biosynthetic homolog of ovothiol synthase OvoA
Non-heme iron-dependent sulfoxide/selenoxide synthases (NHISS) constitute a unique metalloenzyme class capable of installing a C–S/Se bond onto histidine to generate thio/selenoimidazole antioxidants, such as ergothioneine and ovothiol. These natural products are increasingly recognized for their health benefits. Among associated ergothioneine-biosynthetic enzymes, type IV EgtBs stand out, as they exhibit low sequence similarity with other EgtB subfamilies due to their recent divergence from the ovothiol-biosynthetic enzyme OvoA. Herein, we present crystal structures of two representative EgtB-IV enzymes, offering insights into the basis for this evolutionary convergence and enhancing our understanding of NHISS active site organization more broadly. The ability to interpret how key residues modulate substrate specificity and regioselectivity has implications for downstream identification of divergent reactivity within the NHISS family. To this end, we identify a previously unclassified clade of OvoA-like enzymes with a seemingly hybrid set of characteristics, suggesting they may represent an evolutionary intermediate between OvoA and EgtB-IV.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.