K. Seurre, M. Ayachi, F. Godel, S. J. Carreira, B. Dlubak, P. Seneor, V. Humbert, J. E. Villegas
{"title":"在高导磁超导 YBa2Cu3O7 上大规模集成 MoS2 以实现约瑟夫森器件","authors":"K. Seurre, M. Ayachi, F. Godel, S. J. Carreira, B. Dlubak, P. Seneor, V. Humbert, J. E. Villegas","doi":"10.1063/5.0216735","DOIUrl":null,"url":null,"abstract":"High-TC cuprate superconductors' growth conditions and their incompatibility with some of the most standard nanofabrication approaches make their large-scale integration with 2D materials (such as graphene, transition metal dichalcogenides, and other Van der Waals materials) much more difficult than for conventional, metallic superconductors. Here, we address this challenge and develop an approach based on pulsed laser deposition that allows the growth of the 2D semiconductor MoS2 on the archetypal high-TC superconductor YBa2Cu3O7−x. This yields functional heterostructures in which the individual constituents' properties are preserved and that show superconducting coupling across their interface. The developed approach paves the way for large-scale 2D semiconductor co-integration with high-TC superconductors toward the study and leverage of the superconducting proximity effect in hybrid devices.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale integration of MoS2 on high-TC superconducting YBa2Cu3O7 for the realization of Josephson devices\",\"authors\":\"K. Seurre, M. Ayachi, F. Godel, S. J. Carreira, B. Dlubak, P. Seneor, V. Humbert, J. E. Villegas\",\"doi\":\"10.1063/5.0216735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-TC cuprate superconductors' growth conditions and their incompatibility with some of the most standard nanofabrication approaches make their large-scale integration with 2D materials (such as graphene, transition metal dichalcogenides, and other Van der Waals materials) much more difficult than for conventional, metallic superconductors. Here, we address this challenge and develop an approach based on pulsed laser deposition that allows the growth of the 2D semiconductor MoS2 on the archetypal high-TC superconductor YBa2Cu3O7−x. This yields functional heterostructures in which the individual constituents' properties are preserved and that show superconducting coupling across their interface. The developed approach paves the way for large-scale 2D semiconductor co-integration with high-TC superconductors toward the study and leverage of the superconducting proximity effect in hybrid devices.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0216735\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0216735","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Large-scale integration of MoS2 on high-TC superconducting YBa2Cu3O7 for the realization of Josephson devices
High-TC cuprate superconductors' growth conditions and their incompatibility with some of the most standard nanofabrication approaches make their large-scale integration with 2D materials (such as graphene, transition metal dichalcogenides, and other Van der Waals materials) much more difficult than for conventional, metallic superconductors. Here, we address this challenge and develop an approach based on pulsed laser deposition that allows the growth of the 2D semiconductor MoS2 on the archetypal high-TC superconductor YBa2Cu3O7−x. This yields functional heterostructures in which the individual constituents' properties are preserved and that show superconducting coupling across their interface. The developed approach paves the way for large-scale 2D semiconductor co-integration with high-TC superconductors toward the study and leverage of the superconducting proximity effect in hybrid devices.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.