通过 A20/NF-κB p65/MMP-2 途径促进肉鸡空肠中紧密连接蛋白的表达,从而缓解热应激引起的肠屏障功能损伤

IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences
Yangyang Hu, Weiyun Zhang, Ke Yang, Xi Lin, Hsiao-Ching Liu, Jack Odle, Miles Todd See, Xiaoyan Cui, Tingting Li, Shengchen Wang, Xiudong Liao, Liyang Zhang, Sufen Li, Yun Hu, Xugang Luo
{"title":"通过 A20/NF-κB p65/MMP-2 途径促进肉鸡空肠中紧密连接蛋白的表达,从而缓解热应激引起的肠屏障功能损伤","authors":"Yangyang Hu, Weiyun Zhang, Ke Yang, Xi Lin, Hsiao-Ching Liu, Jack Odle, Miles Todd See, Xiaoyan Cui, Tingting Li, Shengchen Wang, Xiudong Liao, Liyang Zhang, Sufen Li, Yun Hu, Xugang Luo","doi":"10.1186/s40104-024-01075-8","DOIUrl":null,"url":null,"abstract":"The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength (Zn-Prot M) can alleviate heat stress (HS)-induced intestinal barrier function damage of broilers. A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers. Under high temperature (HT), a 1 (Control, HT-CON) + 2 (Zn source) × 2 (added Zn level) factorial arrangement of treatments was used. The 2 added Zn sources were Zn-Prot M and Zn sulfate (ZnS), and the 2 added Zn levels were 30 and 60 mg/kg. Under normal temperature (NT), a CON group (NT-CON) and pair-fed group (NT-PF) were included. The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1, occludin, junctional adhesion molecule-A (JAMA), zonula occludens-1 (ZO-1) and zinc finger protein A20 (A20) in the jejunum, and HS also remarkably increased serum fluorescein isothiocyanate dextran (FITC-D), endotoxin and interleukin (IL)-1β contents, serum diamine oxidase (DAO) and matrix metalloproteinase (MMP)-2 activities, nuclear factor kappa-B (NF-κB) p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum. However, dietary supplementation with Zn, especially organic Zn as Zn-Prot M at 60 mg/kg, significantly decreased serum FITC-D, endotoxin and IL-1β contents, serum DAO and MMP-2 activities, NF-κB p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers, and notably promoted mRNA and protein expression levels of claudin-1, ZO-1 and A20. Our results suggest that dietary Zn, especially 60 mg Zn/kg as Zn-Prot M, can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"8 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dietary Zn proteinate with moderate chelation strength alleviates heat stress-induced intestinal barrier function damage by promoting expression of tight junction proteins via the A20/NF-κB p65/MMP-2 pathway in the jejunum of broilers\",\"authors\":\"Yangyang Hu, Weiyun Zhang, Ke Yang, Xi Lin, Hsiao-Ching Liu, Jack Odle, Miles Todd See, Xiaoyan Cui, Tingting Li, Shengchen Wang, Xiudong Liao, Liyang Zhang, Sufen Li, Yun Hu, Xugang Luo\",\"doi\":\"10.1186/s40104-024-01075-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength (Zn-Prot M) can alleviate heat stress (HS)-induced intestinal barrier function damage of broilers. A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers. Under high temperature (HT), a 1 (Control, HT-CON) + 2 (Zn source) × 2 (added Zn level) factorial arrangement of treatments was used. The 2 added Zn sources were Zn-Prot M and Zn sulfate (ZnS), and the 2 added Zn levels were 30 and 60 mg/kg. Under normal temperature (NT), a CON group (NT-CON) and pair-fed group (NT-PF) were included. The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1, occludin, junctional adhesion molecule-A (JAMA), zonula occludens-1 (ZO-1) and zinc finger protein A20 (A20) in the jejunum, and HS also remarkably increased serum fluorescein isothiocyanate dextran (FITC-D), endotoxin and interleukin (IL)-1β contents, serum diamine oxidase (DAO) and matrix metalloproteinase (MMP)-2 activities, nuclear factor kappa-B (NF-κB) p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum. However, dietary supplementation with Zn, especially organic Zn as Zn-Prot M at 60 mg/kg, significantly decreased serum FITC-D, endotoxin and IL-1β contents, serum DAO and MMP-2 activities, NF-κB p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers, and notably promoted mRNA and protein expression levels of claudin-1, ZO-1 and A20. Our results suggest that dietary Zn, especially 60 mg Zn/kg as Zn-Prot M, can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.\",\"PeriodicalId\":14928,\"journal\":{\"name\":\"Journal of Animal Science and Biotechnology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s40104-024-01075-8\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-024-01075-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在确定中等螯合强度的蛋白酸锌(Zn-Prot M)是否以及如何减轻热应激(HS)引起的肉鸡肠道屏障功能损伤。采用完全随机设计法比较测试蛋白酸锌对热应激和非热应激肉鸡的影响。在高温(HT)条件下,采用 1(对照组,HT-CON)+2(锌源)×2(锌添加水平)的因子处理。2个添加锌源分别为 Zn-Prot M 和硫酸锌(ZnS),2个添加锌水平分别为 30 和 60 mg/kg。在常温(NT)条件下,包括CON组(NT-CON)和配对饲喂组(NT-PF)。结果显示,HS明显降低了空肠中claudin-1、occludin、交界粘附分子-A(JAMA)、zonula occludens-1(ZO-1)和锌指蛋白A20(A20)的mRNA和蛋白表达水平,HS还明显增加了血清异硫氰酸荧光素葡聚糖(FITC-D)的表达水平、内毒素和白细胞介素(IL)-1β 含量、血清二胺氧化酶(DAO)和基质金属蛋白酶(MMP)-2 活性、空肠中核因子卡巴-B(NF-κB)p65 mRNA 表达水平以及 NF-κB p65 和 MMP-2 蛋白表达水平。然而,日粮中添加锌,尤其是添加量为 60 mg/kg 的有机锌 Zn-Prot M,可显著降低 HS 肉鸡空肠中血清 FITC-D、内毒素和 IL-1β 含量、血清 DAO 和 MMP-2 活性、NF-κB p65 mRNA 表达水平以及 NF-κB p65 和 MMP-2 蛋白表达水平,并显著促进 claudin-1、ZO-1 和 A20 的 mRNA 和蛋白表达水平。我们的研究结果表明,日粮中的锌,尤其是 60 毫克锌/千克的 Zn-Prot M,可能通过诱导 A20 介导的对 HS 肉鸡空肠中 NF-κB p65/MMP-2 通路的抑制,促进 TJ 蛋白的表达,从而减轻 HS 引起的肠屏障功能损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dietary Zn proteinate with moderate chelation strength alleviates heat stress-induced intestinal barrier function damage by promoting expression of tight junction proteins via the A20/NF-κB p65/MMP-2 pathway in the jejunum of broilers
The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength (Zn-Prot M) can alleviate heat stress (HS)-induced intestinal barrier function damage of broilers. A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers. Under high temperature (HT), a 1 (Control, HT-CON) + 2 (Zn source) × 2 (added Zn level) factorial arrangement of treatments was used. The 2 added Zn sources were Zn-Prot M and Zn sulfate (ZnS), and the 2 added Zn levels were 30 and 60 mg/kg. Under normal temperature (NT), a CON group (NT-CON) and pair-fed group (NT-PF) were included. The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1, occludin, junctional adhesion molecule-A (JAMA), zonula occludens-1 (ZO-1) and zinc finger protein A20 (A20) in the jejunum, and HS also remarkably increased serum fluorescein isothiocyanate dextran (FITC-D), endotoxin and interleukin (IL)-1β contents, serum diamine oxidase (DAO) and matrix metalloproteinase (MMP)-2 activities, nuclear factor kappa-B (NF-κB) p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum. However, dietary supplementation with Zn, especially organic Zn as Zn-Prot M at 60 mg/kg, significantly decreased serum FITC-D, endotoxin and IL-1β contents, serum DAO and MMP-2 activities, NF-κB p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers, and notably promoted mRNA and protein expression levels of claudin-1, ZO-1 and A20. Our results suggest that dietary Zn, especially 60 mg Zn/kg as Zn-Prot M, can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Animal Science and Biotechnology
Journal of Animal Science and Biotechnology AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
9.90
自引率
2.90%
发文量
822
审稿时长
17 weeks
期刊介绍: Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信