Vikas Singh, Yufan Zheng, Daniel Ontaneda, Kedar R Mahajan, Jameson Holloman, Robert J Fox, Kunio Nakamura, Bruce D Trapp
{"title":"进行性多发性硬化症患者的残疾与脑白质脱髓鞘无关","authors":"Vikas Singh, Yufan Zheng, Daniel Ontaneda, Kedar R Mahajan, Jameson Holloman, Robert J Fox, Kunio Nakamura, Bruce D Trapp","doi":"10.1007/s00401-024-02796-w","DOIUrl":null,"url":null,"abstract":"<div><p>The pathogenic mechanisms contributing to neurological disability in progressive multiple sclerosis (PMS) are poorly understood. Cortical neuronal loss independent of cerebral white matter (WM) demyelination in myelocortical MS (MCMS) and identification of MS patients with widespread cortical atrophy and disability progression independent of relapse activity (PIRA) support pathogenic mechanisms other than cerebral WM demyelination. The three-dimensional distribution and underlying pathology of myelinated T2 lesions were investigated in postmortem MCMS brains. Postmortem brain slices from previously characterized MCMS (10 cases) and typical MS (TMS) cases (12 cases) were co-registered with <i>in situ</i> postmortem T2 hyperintensities and T1 hypointensities. T1 intensity thresholds were used to establish a classifier that differentiates MCMS from TMS. The classifier was validated in 36 uncharacterized postmortem brains and applied to baseline MRIs from 255 living PMS participants enrolled in SPRINT-MS. Myelinated T2 hyperintensities in postmortem MCMS brains have a contiguous periventricular distribution that expands at the occipital poles of the lateral ventricles where a surface-in gradient of myelinated axonal degeneration was observed. The MRI classifier distinguished pathologically confirmed postmortem MCMS and TMS cases with an accuracy of 94%. For SPRINT-MS patients, the MRI classifier identified 78% as TMS, 10% as MCMS, and 12% with a paucity of cerebral T1 and T2 intensities. In SPRINT-MS, expanded disability status scale and brain atrophy measures were similar in MCMS and TMS cohorts. A paucity of cerebral WM demyelination in 22% of living PMS patients raises questions regarding a primary role for cerebral WM demyelination in disability progression in all MS patients and has implications for clinical management of MS patients and clinical trial outcomes in PMS. Periventricular myelinated fiber degeneration provides additional support for surface-in gradients of neurodegeneration in MS.</p></div>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"148 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00401-024-02796-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Disability independent of cerebral white matter demyelination in progressive multiple sclerosis\",\"authors\":\"Vikas Singh, Yufan Zheng, Daniel Ontaneda, Kedar R Mahajan, Jameson Holloman, Robert J Fox, Kunio Nakamura, Bruce D Trapp\",\"doi\":\"10.1007/s00401-024-02796-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The pathogenic mechanisms contributing to neurological disability in progressive multiple sclerosis (PMS) are poorly understood. Cortical neuronal loss independent of cerebral white matter (WM) demyelination in myelocortical MS (MCMS) and identification of MS patients with widespread cortical atrophy and disability progression independent of relapse activity (PIRA) support pathogenic mechanisms other than cerebral WM demyelination. The three-dimensional distribution and underlying pathology of myelinated T2 lesions were investigated in postmortem MCMS brains. Postmortem brain slices from previously characterized MCMS (10 cases) and typical MS (TMS) cases (12 cases) were co-registered with <i>in situ</i> postmortem T2 hyperintensities and T1 hypointensities. T1 intensity thresholds were used to establish a classifier that differentiates MCMS from TMS. The classifier was validated in 36 uncharacterized postmortem brains and applied to baseline MRIs from 255 living PMS participants enrolled in SPRINT-MS. Myelinated T2 hyperintensities in postmortem MCMS brains have a contiguous periventricular distribution that expands at the occipital poles of the lateral ventricles where a surface-in gradient of myelinated axonal degeneration was observed. The MRI classifier distinguished pathologically confirmed postmortem MCMS and TMS cases with an accuracy of 94%. For SPRINT-MS patients, the MRI classifier identified 78% as TMS, 10% as MCMS, and 12% with a paucity of cerebral T1 and T2 intensities. In SPRINT-MS, expanded disability status scale and brain atrophy measures were similar in MCMS and TMS cohorts. A paucity of cerebral WM demyelination in 22% of living PMS patients raises questions regarding a primary role for cerebral WM demyelination in disability progression in all MS patients and has implications for clinical management of MS patients and clinical trial outcomes in PMS. Periventricular myelinated fiber degeneration provides additional support for surface-in gradients of neurodegeneration in MS.</p></div>\",\"PeriodicalId\":7012,\"journal\":{\"name\":\"Acta Neuropathologica\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00401-024-02796-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00401-024-02796-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00401-024-02796-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Disability independent of cerebral white matter demyelination in progressive multiple sclerosis
The pathogenic mechanisms contributing to neurological disability in progressive multiple sclerosis (PMS) are poorly understood. Cortical neuronal loss independent of cerebral white matter (WM) demyelination in myelocortical MS (MCMS) and identification of MS patients with widespread cortical atrophy and disability progression independent of relapse activity (PIRA) support pathogenic mechanisms other than cerebral WM demyelination. The three-dimensional distribution and underlying pathology of myelinated T2 lesions were investigated in postmortem MCMS brains. Postmortem brain slices from previously characterized MCMS (10 cases) and typical MS (TMS) cases (12 cases) were co-registered with in situ postmortem T2 hyperintensities and T1 hypointensities. T1 intensity thresholds were used to establish a classifier that differentiates MCMS from TMS. The classifier was validated in 36 uncharacterized postmortem brains and applied to baseline MRIs from 255 living PMS participants enrolled in SPRINT-MS. Myelinated T2 hyperintensities in postmortem MCMS brains have a contiguous periventricular distribution that expands at the occipital poles of the lateral ventricles where a surface-in gradient of myelinated axonal degeneration was observed. The MRI classifier distinguished pathologically confirmed postmortem MCMS and TMS cases with an accuracy of 94%. For SPRINT-MS patients, the MRI classifier identified 78% as TMS, 10% as MCMS, and 12% with a paucity of cerebral T1 and T2 intensities. In SPRINT-MS, expanded disability status scale and brain atrophy measures were similar in MCMS and TMS cohorts. A paucity of cerebral WM demyelination in 22% of living PMS patients raises questions regarding a primary role for cerebral WM demyelination in disability progression in all MS patients and has implications for clinical management of MS patients and clinical trial outcomes in PMS. Periventricular myelinated fiber degeneration provides additional support for surface-in gradients of neurodegeneration in MS.
期刊介绍:
Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.