Ahao Wu, Tengcheng Hu, Chao Lai, Qingwen Zeng, Lianghua Luo, Xufeng Shu, Pan Huang, Zhonghao Wang, Zongfeng Feng, Yanyan Zhu, Yi Cao, Zhengrong Li
{"title":"同源重组信号通路中胃癌诊断生物标记物的筛选及其临床和放射学相关性评估","authors":"Ahao Wu, Tengcheng Hu, Chao Lai, Qingwen Zeng, Lianghua Luo, Xufeng Shu, Pan Huang, Zhonghao Wang, Zongfeng Feng, Yanyan Zhu, Yi Cao, Zhengrong Li","doi":"10.1002/cam4.70153","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Homologous recombination plays a vital role in the occurrence and drug resistance of gastric cancer. This study aimed to screen new gastric cancer diagnostic biomarkers in the homologous recombination pathway and then used radiomic features to construct a prediction model of biomarker expression to guide the selection of chemotherapy regimens.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Gastric cancer transcriptome data were downloaded from The Cancer Genome Atlas database. Machine learning methods were used to screen for diagnostic biomarkers of gastric cancer and validate them experimentally. Computed Tomography image data of gastric cancer patients and corresponding clinical data were downloaded from The Cancer Imaging Archive and our imaging centre, and then the Computed Tomography images were subjected to feature extraction, and biomarker expression prediction models were constructed to analyze the correlation between the biomarker radiomics scores and clinicopathological features.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We screened RAD51D and XRCC2 in the homologous recombination pathway as biomarkers for gastric cancer diagnosis by machine learning, and the expression of RAD51D and XRCC2 was significantly positively correlated with pathological T stage, N stage, and TNM stage. Homologous recombination pathway blockade inhibits gastric cancer cell proliferation, promotes apoptosis, and reduces the sensitivity of gastric cancer cells to chemotherapeutic drugs. Our predictive RAD51D and XRCC2 expression models were constructed using radiomics features, and all the models had high accuracy. In the external validation cohort, the predictive models still had decent accuracy. Moreover, the radiomics scores of RAD51D and XRCC2 were also significantly positively correlated with the pathologic T, N, and TNM stages.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The gastric cancer diagnostic biomarkers RAD51D and XRCC2 that we screened can, to a certain extent, reflect the expression status of genes through radiomic characteristics, which is of certain significance in guiding the selection of chemotherapy regimens for gastric cancer patients.</p>\n </section>\n </div>","PeriodicalId":139,"journal":{"name":"Cancer Medicine","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cam4.70153","citationCount":"0","resultStr":"{\"title\":\"Screening of gastric cancer diagnostic biomarkers in the homologous recombination signaling pathway and assessment of their clinical and radiomic correlations\",\"authors\":\"Ahao Wu, Tengcheng Hu, Chao Lai, Qingwen Zeng, Lianghua Luo, Xufeng Shu, Pan Huang, Zhonghao Wang, Zongfeng Feng, Yanyan Zhu, Yi Cao, Zhengrong Li\",\"doi\":\"10.1002/cam4.70153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Homologous recombination plays a vital role in the occurrence and drug resistance of gastric cancer. This study aimed to screen new gastric cancer diagnostic biomarkers in the homologous recombination pathway and then used radiomic features to construct a prediction model of biomarker expression to guide the selection of chemotherapy regimens.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Gastric cancer transcriptome data were downloaded from The Cancer Genome Atlas database. Machine learning methods were used to screen for diagnostic biomarkers of gastric cancer and validate them experimentally. Computed Tomography image data of gastric cancer patients and corresponding clinical data were downloaded from The Cancer Imaging Archive and our imaging centre, and then the Computed Tomography images were subjected to feature extraction, and biomarker expression prediction models were constructed to analyze the correlation between the biomarker radiomics scores and clinicopathological features.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We screened RAD51D and XRCC2 in the homologous recombination pathway as biomarkers for gastric cancer diagnosis by machine learning, and the expression of RAD51D and XRCC2 was significantly positively correlated with pathological T stage, N stage, and TNM stage. Homologous recombination pathway blockade inhibits gastric cancer cell proliferation, promotes apoptosis, and reduces the sensitivity of gastric cancer cells to chemotherapeutic drugs. Our predictive RAD51D and XRCC2 expression models were constructed using radiomics features, and all the models had high accuracy. In the external validation cohort, the predictive models still had decent accuracy. Moreover, the radiomics scores of RAD51D and XRCC2 were also significantly positively correlated with the pathologic T, N, and TNM stages.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The gastric cancer diagnostic biomarkers RAD51D and XRCC2 that we screened can, to a certain extent, reflect the expression status of genes through radiomic characteristics, which is of certain significance in guiding the selection of chemotherapy regimens for gastric cancer patients.</p>\\n </section>\\n </div>\",\"PeriodicalId\":139,\"journal\":{\"name\":\"Cancer Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cam4.70153\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cam4.70153\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cam4.70153","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Screening of gastric cancer diagnostic biomarkers in the homologous recombination signaling pathway and assessment of their clinical and radiomic correlations
Background
Homologous recombination plays a vital role in the occurrence and drug resistance of gastric cancer. This study aimed to screen new gastric cancer diagnostic biomarkers in the homologous recombination pathway and then used radiomic features to construct a prediction model of biomarker expression to guide the selection of chemotherapy regimens.
Methods
Gastric cancer transcriptome data were downloaded from The Cancer Genome Atlas database. Machine learning methods were used to screen for diagnostic biomarkers of gastric cancer and validate them experimentally. Computed Tomography image data of gastric cancer patients and corresponding clinical data were downloaded from The Cancer Imaging Archive and our imaging centre, and then the Computed Tomography images were subjected to feature extraction, and biomarker expression prediction models were constructed to analyze the correlation between the biomarker radiomics scores and clinicopathological features.
Results
We screened RAD51D and XRCC2 in the homologous recombination pathway as biomarkers for gastric cancer diagnosis by machine learning, and the expression of RAD51D and XRCC2 was significantly positively correlated with pathological T stage, N stage, and TNM stage. Homologous recombination pathway blockade inhibits gastric cancer cell proliferation, promotes apoptosis, and reduces the sensitivity of gastric cancer cells to chemotherapeutic drugs. Our predictive RAD51D and XRCC2 expression models were constructed using radiomics features, and all the models had high accuracy. In the external validation cohort, the predictive models still had decent accuracy. Moreover, the radiomics scores of RAD51D and XRCC2 were also significantly positively correlated with the pathologic T, N, and TNM stages.
Conclusions
The gastric cancer diagnostic biomarkers RAD51D and XRCC2 that we screened can, to a certain extent, reflect the expression status of genes through radiomic characteristics, which is of certain significance in guiding the selection of chemotherapy regimens for gastric cancer patients.
期刊介绍:
Cancer Medicine is a peer-reviewed, open access, interdisciplinary journal providing rapid publication of research from global biomedical researchers across the cancer sciences. The journal will consider submissions from all oncologic specialties, including, but not limited to, the following areas:
Clinical Cancer Research
Translational research ∙ clinical trials ∙ chemotherapy ∙ radiation therapy ∙ surgical therapy ∙ clinical observations ∙ clinical guidelines ∙ genetic consultation ∙ ethical considerations
Cancer Biology:
Molecular biology ∙ cellular biology ∙ molecular genetics ∙ genomics ∙ immunology ∙ epigenetics ∙ metabolic studies ∙ proteomics ∙ cytopathology ∙ carcinogenesis ∙ drug discovery and delivery.
Cancer Prevention:
Behavioral science ∙ psychosocial studies ∙ screening ∙ nutrition ∙ epidemiology and prevention ∙ community outreach.
Bioinformatics:
Gene expressions profiles ∙ gene regulation networks ∙ genome bioinformatics ∙ pathwayanalysis ∙ prognostic biomarkers.
Cancer Medicine publishes original research articles, systematic reviews, meta-analyses, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented in the paper.