用于生物降解植入物的钆添加镁合金

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Arun Kumar Surendran, Jithu Jayaraj, Rajinikanth Veerappan, Manoj Gupta, Srinivasan Amirthalingam, Raghu K Gopalan
{"title":"用于生物降解植入物的钆添加镁合金","authors":"Arun Kumar Surendran,&nbsp;Jithu Jayaraj,&nbsp;Rajinikanth Veerappan,&nbsp;Manoj Gupta,&nbsp;Srinivasan Amirthalingam,&nbsp;Raghu K Gopalan","doi":"10.1002/jbm.b.35474","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Microstructure, mechanical, in vitro and in vivo behavior of extruded Mg alloys with varying Zn/Gd ratios, Mg-2Gd-2Zn-0.5Zr (Zn/Gd = 1), Mg-2Gd-6Zn-0.5Zr (Zn/Gd = 3), and Mg-10Gd-1Zn-0.5Zr (Zn/Gd = 0.1) were investigated. The results revealed that the major secondary phases such as W (Mg<sub>3</sub>Zn<sub>3</sub>Gd<sub>2</sub>), (Mg,Zn)<sub>3</sub>Gd, LPSO (Long period stacking order) and I (Mg<sub>3</sub>Zn<sub>6</sub>Gd) phase in alloys depended on Zn/Gd ratio. These second phases influenced the mechanical as well as biological characteristics of the alloys. Among studied alloys, Mg-10Gd-1Zn-0.5Zr alloy showed the highest yield strength and tensile strength of 270 (±9.29) and 330 MPa (±15.8), respectively, with a reasonably good elongation of 12% (±2.36). The presence of Gd<sub>2</sub>O<sub>3</sub> in the degradation film of Mg-10Gd-1Zn-0.5Zr enhanced the resistance offered by the film, which resulted in its lowest biodegradation, better viability, and cell proliferation under in vitro condition. The short term (subcutaneous implantation in rats for 1 month) in vivo studies showed that the alloy Mg-10Gd-1Zn-0.5Zr degraded at a rate of 0.35 mm/y (±0.02) and did not induce any toxicity to the vital organs.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gd Added Mg Alloy for Biodegradable Implant Applications\",\"authors\":\"Arun Kumar Surendran,&nbsp;Jithu Jayaraj,&nbsp;Rajinikanth Veerappan,&nbsp;Manoj Gupta,&nbsp;Srinivasan Amirthalingam,&nbsp;Raghu K Gopalan\",\"doi\":\"10.1002/jbm.b.35474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Microstructure, mechanical, in vitro and in vivo behavior of extruded Mg alloys with varying Zn/Gd ratios, Mg-2Gd-2Zn-0.5Zr (Zn/Gd = 1), Mg-2Gd-6Zn-0.5Zr (Zn/Gd = 3), and Mg-10Gd-1Zn-0.5Zr (Zn/Gd = 0.1) were investigated. The results revealed that the major secondary phases such as W (Mg<sub>3</sub>Zn<sub>3</sub>Gd<sub>2</sub>), (Mg,Zn)<sub>3</sub>Gd, LPSO (Long period stacking order) and I (Mg<sub>3</sub>Zn<sub>6</sub>Gd) phase in alloys depended on Zn/Gd ratio. These second phases influenced the mechanical as well as biological characteristics of the alloys. Among studied alloys, Mg-10Gd-1Zn-0.5Zr alloy showed the highest yield strength and tensile strength of 270 (±9.29) and 330 MPa (±15.8), respectively, with a reasonably good elongation of 12% (±2.36). The presence of Gd<sub>2</sub>O<sub>3</sub> in the degradation film of Mg-10Gd-1Zn-0.5Zr enhanced the resistance offered by the film, which resulted in its lowest biodegradation, better viability, and cell proliferation under in vitro condition. The short term (subcutaneous implantation in rats for 1 month) in vivo studies showed that the alloy Mg-10Gd-1Zn-0.5Zr degraded at a rate of 0.35 mm/y (±0.02) and did not induce any toxicity to the vital organs.</p>\\n </div>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35474\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35474","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了不同锌/钆比例(Mg-2Gd-2Zn-0.5Zr(Zn/Gd = 1)、Mg-2Gd-6Zn-0.5Zr(Zn/Gd = 3)和 Mg-10Gd-1Zn-0.5Zr(Zn/Gd = 0.1)的挤压镁合金的微观结构、力学、体外和体内行为。结果表明,合金中的主要次生相,如 W(Mg3Zn3Gd2)、(Mg,Zn)3Gd、LPSO(长周期堆积阶)和 I(Mg3Zn6Gd)相取决于 Zn/Gd 比率。这些第二相影响了合金的机械和生物特性。在所研究的合金中,Mg-10Gd-1Zn-0.5Zr 合金的屈服强度和抗拉强度最高,分别为 270 (±9.29) MPa 和 330 MPa (±15.8),伸长率也相当不错,为 12% (±2.36)。Mg-10Gd-1Zn-0.5Zr 降解薄膜中 Gd2O3 的存在增强了薄膜的抗性,使其在体外条件下的生物降解率最低、存活率更高、细胞增殖能力更强。短期(大鼠皮下植入 1 个月)体内研究表明,Mg-10Gd-1Zn-0.5Zr 合金的降解速度为 0.35 mm/y(±0.02),不会对重要器官产生任何毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gd Added Mg Alloy for Biodegradable Implant Applications

Microstructure, mechanical, in vitro and in vivo behavior of extruded Mg alloys with varying Zn/Gd ratios, Mg-2Gd-2Zn-0.5Zr (Zn/Gd = 1), Mg-2Gd-6Zn-0.5Zr (Zn/Gd = 3), and Mg-10Gd-1Zn-0.5Zr (Zn/Gd = 0.1) were investigated. The results revealed that the major secondary phases such as W (Mg3Zn3Gd2), (Mg,Zn)3Gd, LPSO (Long period stacking order) and I (Mg3Zn6Gd) phase in alloys depended on Zn/Gd ratio. These second phases influenced the mechanical as well as biological characteristics of the alloys. Among studied alloys, Mg-10Gd-1Zn-0.5Zr alloy showed the highest yield strength and tensile strength of 270 (±9.29) and 330 MPa (±15.8), respectively, with a reasonably good elongation of 12% (±2.36). The presence of Gd2O3 in the degradation film of Mg-10Gd-1Zn-0.5Zr enhanced the resistance offered by the film, which resulted in its lowest biodegradation, better viability, and cell proliferation under in vitro condition. The short term (subcutaneous implantation in rats for 1 month) in vivo studies showed that the alloy Mg-10Gd-1Zn-0.5Zr degraded at a rate of 0.35 mm/y (±0.02) and did not induce any toxicity to the vital organs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信