甲脒氯化物添加剂的双重功能提高了低维过氧化物太阳能电池的效率和稳定性

Electron Pub Date : 2024-06-16 DOI:10.1002/elt2.52
Lvpeng Yang, Tong Bie, Peiyu Ma, Jin Xin, Tho D. Nguyen, Ming Shao
{"title":"甲脒氯化物添加剂的双重功能提高了低维过氧化物太阳能电池的效率和稳定性","authors":"Lvpeng Yang,&nbsp;Tong Bie,&nbsp;Peiyu Ma,&nbsp;Jin Xin,&nbsp;Tho D. Nguyen,&nbsp;Ming Shao","doi":"10.1002/elt2.52","DOIUrl":null,"url":null,"abstract":"<p>Despite their excellent intrinsic stability, low-dimensional Ruddlesden-Popper (LDRP) perovskites face challenges with low power conversion efficiency (PCE), primarily due to the widen bandgap and limited charge transport caused by the bulky spacer cation. Herein, we introduce formamidinium chloride (FACl) as an additive into (4-FPEA)<sub>2</sub>MA<sub>4</sub>Pb<sub>5</sub>I<sub>16</sub> perovskite. On the one hand, the addition of FACl narrows the bandgap through cation exchange between MA<sup>+</sup> and FA<sup>+</sup>, thereby extending the light absorption range and enhancing photocurrent generation. On the other hand, this MA<sup>+</sup>/FA<sup>+</sup> cation exchange decelerates the sublimation of methylammonium chloride and prolongs the crystallization of LDRP perovskite, leading to higher crystallinity and better film quality with a decreased trap-state density. Consequently, this approach led to a remarkable PCE of 20.46% for &lt;<i>n</i>&gt; = 5 LDRP perovskite solar cells (PSCs), ranking among the highest for MA/FA mixed low dimensional PSCs reported to date. Remarkably, our PSCs maintained 90% and 92% of the initial efficiency even after 1300 h at (60 ± 5)°C and (60 ± 5)% relative humidity, respectively. This work promotes the development of LDRP PSCs with excellent efficiency and environmental stability for potential commercial application.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.52","citationCount":"0","resultStr":"{\"title\":\"Dual function of formamidinium chloride additive improves the efficiency and stability of low-dimensional perovskite solar cells\",\"authors\":\"Lvpeng Yang,&nbsp;Tong Bie,&nbsp;Peiyu Ma,&nbsp;Jin Xin,&nbsp;Tho D. Nguyen,&nbsp;Ming Shao\",\"doi\":\"10.1002/elt2.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite their excellent intrinsic stability, low-dimensional Ruddlesden-Popper (LDRP) perovskites face challenges with low power conversion efficiency (PCE), primarily due to the widen bandgap and limited charge transport caused by the bulky spacer cation. Herein, we introduce formamidinium chloride (FACl) as an additive into (4-FPEA)<sub>2</sub>MA<sub>4</sub>Pb<sub>5</sub>I<sub>16</sub> perovskite. On the one hand, the addition of FACl narrows the bandgap through cation exchange between MA<sup>+</sup> and FA<sup>+</sup>, thereby extending the light absorption range and enhancing photocurrent generation. On the other hand, this MA<sup>+</sup>/FA<sup>+</sup> cation exchange decelerates the sublimation of methylammonium chloride and prolongs the crystallization of LDRP perovskite, leading to higher crystallinity and better film quality with a decreased trap-state density. Consequently, this approach led to a remarkable PCE of 20.46% for &lt;<i>n</i>&gt; = 5 LDRP perovskite solar cells (PSCs), ranking among the highest for MA/FA mixed low dimensional PSCs reported to date. Remarkably, our PSCs maintained 90% and 92% of the initial efficiency even after 1300 h at (60 ± 5)°C and (60 ± 5)% relative humidity, respectively. This work promotes the development of LDRP PSCs with excellent efficiency and environmental stability for potential commercial application.</p>\",\"PeriodicalId\":100403,\"journal\":{\"name\":\"Electron\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.52\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elt2.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管低维 Ruddlesden-Popper(LDRP)包晶石具有出色的内在稳定性,但却面临着功率转换效率(PCE)低的挑战,这主要是由于笨重的间隔阳离子导致带隙变宽和电荷传输受限。在此,我们在 (4-FPEA)2MA4Pb5I16 包晶中引入了甲脒氯化物(FACl)作为添加剂。一方面,FACl 的加入通过 MA+ 和 FA+ 之间的阳离子交换缩小了带隙,从而扩大了光吸收范围并增强了光电流的产生。另一方面,MA+/FA+ 阳离子交换可减缓甲基氯化铵的升华,延长 LDRP 包晶体的结晶时间,从而提高结晶度,改善薄膜质量,降低陷阱态密度。因此,这种方法使 <n> = 5 LDRP 包晶体太阳能电池(PSCs)的 PCE 达到了 20.46%,是迄今为止报告的 MA/FA 混合低维 PSCs 中最高的。值得注意的是,即使在(60±5)℃和(60±5)%相对湿度条件下放置 1300 小时后,我们的 PSC 仍分别保持了 90% 和 92% 的初始效率。这项工作推动了具有卓越效率和环境稳定性的 LDRP PSCs 的发展,为其潜在的商业应用提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual function of formamidinium chloride additive improves the efficiency and stability of low-dimensional perovskite solar cells

Dual function of formamidinium chloride additive improves the efficiency and stability of low-dimensional perovskite solar cells

Despite their excellent intrinsic stability, low-dimensional Ruddlesden-Popper (LDRP) perovskites face challenges with low power conversion efficiency (PCE), primarily due to the widen bandgap and limited charge transport caused by the bulky spacer cation. Herein, we introduce formamidinium chloride (FACl) as an additive into (4-FPEA)2MA4Pb5I16 perovskite. On the one hand, the addition of FACl narrows the bandgap through cation exchange between MA+ and FA+, thereby extending the light absorption range and enhancing photocurrent generation. On the other hand, this MA+/FA+ cation exchange decelerates the sublimation of methylammonium chloride and prolongs the crystallization of LDRP perovskite, leading to higher crystallinity and better film quality with a decreased trap-state density. Consequently, this approach led to a remarkable PCE of 20.46% for <n> = 5 LDRP perovskite solar cells (PSCs), ranking among the highest for MA/FA mixed low dimensional PSCs reported to date. Remarkably, our PSCs maintained 90% and 92% of the initial efficiency even after 1300 h at (60 ± 5)°C and (60 ± 5)% relative humidity, respectively. This work promotes the development of LDRP PSCs with excellent efficiency and environmental stability for potential commercial application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信