Chengwu Zang, Min Che, Hang Xian, Xin Xiao, Tengfei Li, Yongxiang Chen, Yaxiong Liu, Rui Cong
{"title":"三维打印硅酸盐多孔生物陶瓷促进了M2-巨噬细胞的极化,从而增强了骨再生过程中的血管生成","authors":"Chengwu Zang, Min Che, Hang Xian, Xin Xiao, Tengfei Li, Yongxiang Chen, Yaxiong Liu, Rui Cong","doi":"10.1002/jbm.b.35469","DOIUrl":null,"url":null,"abstract":"<p>The failure of bone regeneration has been considered as a serious problem that troubling patients for decades, most of which was resulted by the poor angiogenesis and chronic inflammation after surgery. Among multiple materials applied in the repair of bone defect, silicate bioceramics attracted researchers because of its excellent bioactivity. The purpose of this study was to detect the effect of specific bioactive glass ceramic (AP40, based on crystalline phases of apatite and wollastonite) on angiogenesis and the subsequent bone growth through the modulation of macrophages. Two groups were included in this study: control group (macrophages without any stimulation, denominated as Control) and AP40 group (macrophages incubated on AP40). This study investigated the effect of AP40 on macrophages polarization (RAW264.7) and angiogenesis in vitro and in vivo. Additionally, the changes of angiogenic ability regulated by macrophages were explored. AP40 showed excellent angiogenesis potential and the expression of CD31 was promoted through the modulation of macrophages toward M2 subtype. Additionally, the macrophages incubated on AP40 synthesized more PDGF-BB comparing to macrophages without any stimulation, which contributed to the improved angiogenetic ability of human umbilical vein endothelial cells (HUVECs). Results of in vivo studies indicated increased bone ingrowth along the implants, which indicated the potential of bioceramics for bone defect repair clinically.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-printed silicate porous bioceramics promoted the polarization of M2-macrophages that enhanced the angiogenesis in bone regeneration\",\"authors\":\"Chengwu Zang, Min Che, Hang Xian, Xin Xiao, Tengfei Li, Yongxiang Chen, Yaxiong Liu, Rui Cong\",\"doi\":\"10.1002/jbm.b.35469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The failure of bone regeneration has been considered as a serious problem that troubling patients for decades, most of which was resulted by the poor angiogenesis and chronic inflammation after surgery. Among multiple materials applied in the repair of bone defect, silicate bioceramics attracted researchers because of its excellent bioactivity. The purpose of this study was to detect the effect of specific bioactive glass ceramic (AP40, based on crystalline phases of apatite and wollastonite) on angiogenesis and the subsequent bone growth through the modulation of macrophages. Two groups were included in this study: control group (macrophages without any stimulation, denominated as Control) and AP40 group (macrophages incubated on AP40). This study investigated the effect of AP40 on macrophages polarization (RAW264.7) and angiogenesis in vitro and in vivo. Additionally, the changes of angiogenic ability regulated by macrophages were explored. AP40 showed excellent angiogenesis potential and the expression of CD31 was promoted through the modulation of macrophages toward M2 subtype. Additionally, the macrophages incubated on AP40 synthesized more PDGF-BB comparing to macrophages without any stimulation, which contributed to the improved angiogenetic ability of human umbilical vein endothelial cells (HUVECs). Results of in vivo studies indicated increased bone ingrowth along the implants, which indicated the potential of bioceramics for bone defect repair clinically.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35469\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35469","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
3D-printed silicate porous bioceramics promoted the polarization of M2-macrophages that enhanced the angiogenesis in bone regeneration
The failure of bone regeneration has been considered as a serious problem that troubling patients for decades, most of which was resulted by the poor angiogenesis and chronic inflammation after surgery. Among multiple materials applied in the repair of bone defect, silicate bioceramics attracted researchers because of its excellent bioactivity. The purpose of this study was to detect the effect of specific bioactive glass ceramic (AP40, based on crystalline phases of apatite and wollastonite) on angiogenesis and the subsequent bone growth through the modulation of macrophages. Two groups were included in this study: control group (macrophages without any stimulation, denominated as Control) and AP40 group (macrophages incubated on AP40). This study investigated the effect of AP40 on macrophages polarization (RAW264.7) and angiogenesis in vitro and in vivo. Additionally, the changes of angiogenic ability regulated by macrophages were explored. AP40 showed excellent angiogenesis potential and the expression of CD31 was promoted through the modulation of macrophages toward M2 subtype. Additionally, the macrophages incubated on AP40 synthesized more PDGF-BB comparing to macrophages without any stimulation, which contributed to the improved angiogenetic ability of human umbilical vein endothelial cells (HUVECs). Results of in vivo studies indicated increased bone ingrowth along the implants, which indicated the potential of bioceramics for bone defect repair clinically.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.